Answer:
114.92749 keV
Explanation:
r = Radius of trajectory
m = Mass of electron = 
B = Magnetic field = 0.044 T
q = Charge of electron = 
The centripetal force and the magnetic forces are conserved

Velocity of first electron

Velocity of second electron

Total kinetic energy is given by

Converting to eV


The energy of incident electron is 114.92749 keV
Alkanes are hydrocarbons with general formula
.
So alkane with two carbon atoms will be
, alkane with four carbon atoms will be
, alkane with six carbon atoms will be
, alkane with eight carbon atoms will be
.
As the number of carbon atoms increase, the surface area will increase and thus the vanderwaal forces will also increase, and the boiling point will also increase.
Thus the approximate boiling point order is: 
The approximate boiling points will be: 125° C >68° C > -1 °C > -89° C
Answer:
T = g μ_s ( M+m )
78.4 N
Explanation:
When both of them move with the same acceleration , small box will not slip over the bigger one. When we apply force on the lower box, it starts moving with respect to lower box. So a frictional force arises on the lower box which helps it too to go ahead . The maximum value that this force can attain is mg μ_s . As a reaction of this force, another force acts on the lower box in opposite direction .
Net force on the lower box
= T - mg μ_s = M a ( a is the acceleration created by net force in M )
Considering force on the upper box
mg μ_s = ma
a = g μ_s
Put this value of a in the equation above
T - m gμ_s = M g μ_s
T = mg μ_s + M g μ_s
= g μ_s ( M+m )
2 )
Largest tension required
T = 9.8 x .50 x ( 10+6 )
= 78.4 N
We can solve the problem by using the law of conservation of energy.
Using the ground as reference point, the mechanical energy of the brick when it is at 5 m from the ground is just potential energy (because the brick is initially at rest, so it doesn't have kinetic energy):

when the brick is at h'=3 m from the ground, its mechanical energy is now sum of kinetic energy and potential energy:

where v is the velocity of the brick. Since E is conserved, it must be equal to the initial energy (98.1 J), so we can solve this equation to find v:
Answer:
If there is any sheets or padded material in this room you can cover the window, you could turn off all the lights if there is a light switch in the room, you could try to bring a bright flashlight in and shine it into the other room(try to annoy the person watching you so they leave), act really boring and hopefully make the other person lose interest.
Explanation:
(hint) If you actually get in a situation like this place your fingernail against the mirror or glass you think could possibly be a one-way mirror. If there's a gap between your nail and the mirror, it's most likely a genuine mirror :)