answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
levacccp [35]
2 years ago
13

A boy is pushing a chair by applying a force of 5 newtons. His mother helps him push it faster by applying an additional force o

f 7 newtons in the same direction. What is the net force acting on the chair?
a. 2 newtons
b. 5 newtons
c. 7 newtons
d. 12 newtons
e. 14 newtons
Physics
2 answers:
IRISSAK [1]2 years ago
8 0
12 Newtons in same direction
Mariulka [41]2 years ago
6 0

Answer: Option (d) is the correct answer.

Explanation:

Net force means the sum of total or all the forces acting on an object.

Mathematically,     F_{total} = F_{1} + F_{2} + F_{3} + ....and so on

Therefore, when a boy is pushing a chair by applying a force of 5 newtons and his mother is helping him by pushing the chair with a force of 7 newtons then calculate the net force acting on the chair as follows.

                      F_{total} = F_{1} + F_{2}

                                      = (5 + 7) N

                                      = 12 N

Thus, we can conclude that net force acting on the chair is 12 N.

You might be interested in
Biologists think that some spiders "tune" strands of their web to give enhanced response at frequencies corresponding to those a
garik1379 [7]

Answer:

T=2.94*10^-10  N/m.

Explanation:

Biologists think that some spiders "tune" strands of their web to give enhanced response at frequencies corresponding to those at which desirable prey might struggle. Orb spider web silk has a typical diameter of 20μm, and spider silk has a density of 1300 kg/m³.

To have a fundamental frequency at 150Hz , to what tension must a spider adjust a 14cm -long strand of silk?

l=length of the spider silk, 14cm

velocity of wave = √(T/μ)          

where T = tension and

μ = mass per unit length)

λ/2=l

for fundamental frequency λ/2 =14cm    

 (λ= wavelength of standing wave;  as there will be no node

   except the endpoints of silk strand)

               λ = 28 cm = 0.28 m

and since frequency * wavelength = speed of wave. we have,

                  150 * 0.28 = √(T/μ)                                        ..................(#)

now μ = mass/length = [volume * density]/length = [(length*area) * density] / length = area * density

         = [π * (10 * 10^(-6))²] * 1300  = 13π * 10^(-8).

now putting this in equation (#) we get

    150 * 0.28 = √(T/[13π * 10^(-8)]).

thus T = [13π * 10^(-8)] * (42)²     =  

2.94*10^-10  N/m.

6 0
2 years ago
An 80.0-kg object is falling and experiences a drag force due to air resistance. The magnitude of this drag force depends on its
Alja [10]

Answer:

 Terminal velocity of object = 12.58 m/s

Explanation:

 We know that the terminal velocity is attained when drag force and gravitational force are of the same magnitude.

Gravitational force = mg = 80 * 9.8 = 784 N

Drag force = 12.0v+4.00v^2

Equating both, we have

    784=12.0v+4.00v^2\\ \\ v^2+3v-196=0\\ \\ (v-12.58)(v+15.58)=0

  So v = 12.58 m/s or v = -15.58 m/s ( not possible)

 So terminal velocity of object = 12.58 m/s    

7 0
2 years ago
You and your friend Peter are putting new shingles on a roof pitched at 20degrees . You're sitting on the very top of the roof w
Anit [1.1K]

Answer:

v₀ =3.8 m/s

Explanation:

Newton's second law of the box:

∑F = m*a Formula (1)

∑F : algebraic sum of the forces in Newton (N)

m : mass in kilograms (kg)

a : acceleration in meters over second square (m/s²)

Known data

m=2.1 kg  mass of the box

d= 5.4m  length of the roof

θ = 20° angle θ of the roof with respect to the horizontal direction

μk= 0.51 : coefficient of kinetic friction between the box and the roof  

g = 9.8 m/s² : acceleration due to gravity

Forces acting on the box

We define the x-axis in the direction parallel to the movement of the box on the roof  and the y-axis in the direction perpendicular to it.

W: Weight of the box  : In vertical direction

N : Normal force : perpendicular to the direction the  roof

fk : Friction force: parallel to the direction to the roof

Calculated of the weight  of the box

W= m*g  =  (2.1 kg)*(9.8 m/s²)= 20.58 N

x-y weight components

Wx= Wsin θ= (20.58)*sin(20)° =7.039 N

Wy= Wcos θ =(20.58)*cos(20)°= 19.34 N

Calculated of the Normal force

∑Fy = m*ay    ay = 0

N-Wy= 0

N=Wy =19.34 N

Calculated of the Friction force:

fk=μk*N= 0.51* 19.34 N = 9.86 N

We apply the formula (1) to calculated acceleration of the block:

∑Fx = m*ax  ,  ax= a  : acceleration of the block

Wx-f = ( 2.1)*a

7.039 - 9.86  = ( 2.1)*a

-2.821 = ( 2.1)*a

a=(-2.821) /( 2.1)

a= -1.34  m/s²

Kinematics of the box

Because the box moves with uniformly accelerated movement we apply the following formula to calculate the final speed of the block :

vf²=v₀²+2*a*d Formula (2)

Where:  

d:displacement  = 5.4 m

v₀: initial speed  

vf: final speed  = 0

a : acceleration of the box = -1.34  m/s²

We replace data in the formula (2)

0²=v₀²+2*(-1.34)*(5.4)

2*(1.34)*(5.4)= v₀²

v_{o} =\sqrt{14.472}

v₀ = 3.8 m/s

7 0
2 years ago
Recall that the differential equation for the instantaneous charge q(t) on the capacitor in an lrc-series circuit is l d 2q dt 2
Aloiza [94]
DE which is the differential equation represents the LRC series circuit where
L d²q/dt² + Rdq/dt +I/Cq = E(t) = 150V.
Initial condition is q(t) = 0 and i(0) =0.
To find the charge q(t)  by using Laplace transformation by
Substituting known values for DE
L×d²q/dt² +20 ×dq/dt + 1/0.005× q = 150
d²q/dt² +20dq/dt + 200q =150
5 0
2 years ago
g A particle moves according to a law of motion s = f(t), t ≥ 0, where t is measured in seconds and s in feet. f(t) = 0.01t4 − 0
Margarita [4]

Answer:

Explanation:

If a particle move with time and expressed according to the formula:

f(t) = 0.01t⁴ − 0.03t³

a) Velocity is the change in motion of the particle with respect to time and it is expressed as;

v(t) =\frac{d(f(t))}{dt}

v(t) = 4(0.01)t^{4-1} - 3(0.03)t^{3-1}\\v(t) = 0.04t^3 - 0.09t^2

Hence the velocity of the particle at time t is v(t) = 0.04t^3 - 0.09t^2

b) To calculate the velocity after 1 second, we will substitute t = 1 into the function v(t) in (a) as shown:

v(t) = 0.04t^3 - 0.09t^2\\v(1) = 0.04(1)^3 - 0.09(1)^2\\v(t) = 0.04 - 0.09\\v(t) = -0.05

Hence the velocity after 1second is -0.05

c) The particle is at rest when when the time is zero.

Initially, the body is not moving and the time during this time is 0. Hence the particle is at rest when t = 0second

6 0
2 years ago
Other questions:
  • The wavelength of some red light is 700.5 nm. what is the frequency of this red light?
    15·1 answer
  • A 0.70-m radius cylindrical region contains a uniform electric field that is parallel to the axis and is increasing at the rate
    11·2 answers
  • The position function x(t) of a particle moving along an x axis is x = 4.00 - 6.00t2, with x in meters and t in seconds. (a) at
    14·1 answer
  • A glass jug can be used to play different pitched sounds by blowing air over the opening of the jug and vibrating the air molecu
    7·1 answer
  • A rectangular key was used in a pulley connected to a line shaft with a power of 7.46 kW at a speed of 1200 rpm. If the shearing
    7·2 answers
  • A small rivet connecting two pieces of sheet metal is being clinched by hammering. Determine the impulse exerted on the rivet an
    10·1 answer
  • Follow these steps to solve this problem: Two identical loudspeakers, speaker 1 and speaker 2, are 2.0 m apart and are emitting
    10·1 answer
  • Bernice draws an oxygen atom. She draws a small circle for the nucleus. Inside of the circle, she draws plus signs for protons a
    14·1 answer
  • In a study, the data you collect is Habits on a Always/Sometimes/Never scale.What is the level of measurement?
    15·1 answer
  • 1 lb equals how many grams
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!