Answer:
Explanation:
mass of car, m = 1000 kg
initial velocity, u = 20 m/s
final velocity, v = 0 m/s
distance, s = 120 m
Let a be the acceleration of motion
use third equation of motion
v² = u² + 2 as
0 = 20 x 20 + 2 x a x 120
a = - 1.67 m/s²
Let F be the force
Force, F mass x acceleration
F = - 1000 x 1.67
F = - 1666.67 N
The direction of force is towards south and the magnitude of force is 1666.67 N.
<span>It is quite straightforward to convert an uncertainty to a percent uncertainty. We can divide the amount of uncertainty by the original amount and then multiply by 100%.
(2 m / 20,000,000 m) X 100% = 0.00001%
The percent uncertainty is 0.00001%.
The percent accuracy is the 100% - percent uncertainty.
The percent accuracy = 100% - 0.00001% = 99.99999%
The percent accuracy is 99.99999%.</span>
Answer:
Explanation:
Two frequencies with magnitude 150 Hz and 750 Hz are given
For Pipe open at both sides
fundamental frequency is 150 Hz as it is smaller
frequency of pipe is given by

where L=length of Pipe
v=velocity of sound
for n=1
and f=750 is for n=5
thus there are three resonance frequencies for n=2,3 and 4
For Pipe closed at one end
frequency is given by

for n=0


for n=2

Thus there is one additional resonance corresponding to n=1 , between
and 
Answer: The weight of a 72.0 kg astronaut on the Moon is 117.36 N.
Explanation:
Mass of the astronaut on the moon , m= 72 kg
Acceleration due to gravity on moon,g = 1.63 
According to Newton second law of motion: F = ma
This will changes to = Weight = mass × g

The weight of a 72.0 kg astronaut on the Moon is 117.36 N.
Answer:Thus, The magnetic field around a current-carrying wire is <u><em>directly</em></u> proportional to the current and <u><em>inversely</em></u> proportional to the distance from the wire. If the current triples while the distance doubles, the strength of the magnetic field increases by <u><em>one and half (1.5)</em></u> times.
Explanation:
Magnetic field around a long current carrying wire is given by

where B= magnetic field
permeability of free space
I= current in the long wire and
r= distance from the current carrying wire
Thus, The magnetic field around a current-carrying wire is <u><em>directly</em></u> proportional to the current and <u><em>inversely</em></u> proportional to the distance from the wire.
Now if I'=3I and r'=2r then magnetic field B' is given by

Thus If the current triples while the distance doubles, the strength of the magnetic field increases by <u><em>one and half (1.5)</em></u> times.