Answer:
592.92 x 10³ Pa
Explanation:
Mole of ammonia required = 10 g / 17 =0 .588 moles
We shall have to find pressure of .588 moles of ammonia at 30 degree having volume of 2.5 x 10⁻³ m³. We can calculate it as follows .
From the relation
PV = nRT
P x 2.5 x 10⁻³ = .588 x 8.32 x ( 273 + 30 )
P = 592.92 x 10³ Pa
To solve this question, we need to use the component method and split our displacements into their x and y vectors. We will assign north and east as the positive directions.
The first movement of 25m west is already split. x = -25m, y = 0m.
The second movement of 45m [E60N] needs to be split using trig.
x = 45cos60 = 22.5m
y = 45sin60 = 39.0m
Then, we add the two x and two y displacements to get the total displacement in each direction.
x = -25m + 22.5m = -2.5m
y = 0m + 39.0m
We can use Pythagorean theorem to find the total displacement.
d² = x² + y²
d = √(-2.5² + 39²)
d = 39.08m
And then we can use tan to find the angle.
inversetan(y/x) = angle
inversetan(39/2.5) = 86.3
Therefore, the total displacement is 39.08m [W86.3N]
A sound wave. Because in a vacuum there is no medium in a vacuum. And the only wave that requires a medium to travel through is a sound wave.
The car acceleration is 22.2 repeating meters per second squared