answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
beks73 [17]
2 years ago
11

As computer structures get smaller and smaller, quantum rules start to create difficulties. Suppose electrons move through a cha

nnel in a microprocessor. If we know that an electron is somewhere along the 50 nm length of the channel, what is ∆vx? If we treat the elec- tron as a classical particle moving at a speed at the outer edge of the uncertainty range, how long would it take to traverse the channel?
Physics
1 answer:
nadezda [96]2 years ago
6 0

Answer:

a) ∆x∆v = 5.78*10^-5

   ∆v = 1157.08 m/s

b) 4.32*10^{-11}

Explanation:

To solve this problem you use the Heisenberg's uncertainty principle, that is given by:

\Delta x\Delta p \geq \frac{\hbar}{2}

where h is the Planck's constant (6.62*10^-34 J s).

If you assume that the mass of the electron is constant you have:

\Delta x \Delta (m_ev)=m_e\Delta x\Delta v \geq \frac{\hbar}{2}

you use the value of the mass of an electron (9.61*10^-31 kg), and the uncertainty in the position of the electron (50nm), in order to calculate ∆x∆v and ∆v:

\Delta x \Delta v\geq\frac{\hbar}{2m_e}=\frac{(1.055*10^{-34}Js)}{2(9.1*10^{-31}kg)}=5.78*10^{-5}\ m^2/s

\Delta v\geq\frac{5.78*10^{-5}}{50*10^{-9}m}=1157.08\frac{m}{s}

If the electron is a classical particle, the time it takes to traverse the channel is (by using the edge of the uncertainty in the velocity):

t=\frac{x}{v}=\frac{50*10^{-9}m}{1157.08m/s}=4.32*10^{-11}s

You might be interested in
Suppose that you lift four boxes individually, each at a constant velocity. The boxes have weights of 3.0 N, 4.0 N, 6.0 N, and 2
Alona [7]

Answer:

The vertical distance of weight 3.0 N = 4 m, vertical distance of weight 4.0 N = 3 m, vertical distance of weight 6.0 N = 2 m, vertical distance of weight 2.0 N = 6 m

Explanation:

Worked : work can be defined as the product of force and distance.

The S.I unit of work is Joules (J).

Mathematically it can be represented as,

W = F×d.................. Equation 1

d = W/F.............................. Equation 2

where W = work, F = force, d = distance.

<em>Given: W = 12 J</em>

(i) for the 3.0 N weight,

using equation 2

d = 12/3

d= 4 m.

(ii) for the 4.0 N weight,

d = 12/4

d = 3 m.

(iii) for the 6.0 N weight,

d = 12/6

d = 2 m.

(iv) for the 2.0 N weight,

d = 12/2

d = 6 m

Therefore vertical distance of weight 3.0 N = 4 m, vertical distance of weight 4.0 N = 3 m, vertical distance of weight 6.0 N = 2 m, vertical distance of weight 2.0 N = 6 m

8 0
2 years ago
A simple watermelon launcher is designed as a spring with a light platform for the watermelon. When an 8.00 kg watermelon is put
olga_2 [115]

To solve this problem it is necessary to apply the concepts related to the Force from Hooke's law, the force since Newton's second law and the potential elastic energy.

Since the forces are balanced the Spring force is equal to the force of the weight that is

F_s = F_g

kx = mg

Where,

k = Spring constant

x = Displacement

m = Mass

g = Gravitational Acceleration

Re-arrange to find the spring constant

k = \frac{mg}{x}

k = \frac{8*9.8}{0.1}

k = 784N/m

Just before launch the compression is 40cm, then from Potential Elastic Energy definition

PE = \frac{1}{2} kx^2

PE =\frac{1}{2} 784*0.4^2

PE = 63.72J

Therefore the energy stored in the spring is 63.72J

6 0
2 years ago
The air in a pipe resonates at 150 Hz and 750 Hz, one of these resonances being the fundamental. If the pipe is open at both end
Xelga [282]

Answer:

Explanation:

Two frequencies with magnitude 150 Hz and 750 Hz are given

For Pipe open at both sides

fundamental frequency is 150 Hz as it is smaller

frequency  of pipe is given by

f=\frac{nv}{2L}

where L=length of Pipe

v=velocity of sound

f=150\ Hz for n=1

and f=750 is for n=5

thus there are three resonance frequencies for n=2,3 and 4

For Pipe closed at one end

frequency is given by

f=\frac{(2n+1)}{4L}\cdot v

for n=0

f_1=\frac{v}{4L}

f_1=150\ Hz

for n=2

f_2=\frac{5v}{4L}

Thus there is one additional resonance corresponding to n=1 , between f_1 and f_2

8 0
2 years ago
Whipple is confused about the connection between the velocity and acceleration of the tennis ball. he decides to compare the vel
tamaranim1 [39]

The speed of the ball is always zero and the acceleration is always -g when it reaches the top of its motion. This is because when the ball is free, only gravity acts on it which is always downwards, hence g is the net acceleration and it is always negative. However the velocity does not direction change instantly, negative acceleration first slows down the ball with a positive velocity, until that point the ball keeps moving up, then the ball velocity becomes zero just before changing direction and becoming negative after which the ball will now go down along gravity. Hence the ball velocity is zero at the top (neither going up nor down). Mathematically this can be seen as velocity is the integration of acceleration.

7 0
2 years ago
You are working as an assistant to an air-traffic controller at the local airport, from which small airplanes take off and land.
Alika [10]

Answer:

d = 2021.6 km

Explanation:

We can solve this distance exercise with vectors, the easiest method s to find the components of the position of each plane and then use the Pythagorean theorem to find distance between them

Airplane 1

Height   y₁ = 800m

Angle θ = 25°

           cos 25 = x / r

           sin 25 = z / r

           x₁ = r cos 20

           z₁ = r sin 25

          x₁ = 18 103 cos 25 = 16,314 103 m = 16314 m

          z₁ = 18 103 sin 25 = 7,607 103 m= 7607 m

2 plane

Height   y₂ = 1100 m

Angle θ = 20°

          x₂ = 20 103 cos 25 = 18.126 103 m = 18126 m

          z₂ = 20 103 without 25 = 8.452 103 m = 8452 m

The distance between the planes using the Pythagorean Theorem is

         d² = (x₂-x₁)² + (y₂-y₁)² + (z₂-z₁)²2

Let's calculate

        d² = (18126-16314)²  + (1100-800)² + (8452-7607)²

        d² = 3,283 106 +9 104 + 7,140 105

        d² = (328.3 + 9 + 71.40) 10⁴

        d = √(408.7 10⁴)

        d = 20,216 10² m

        d = 2021.6 km

7 0
2 years ago
Other questions:
  • Which elements do hydrogen fuel cells combine to produce electricity? hydrogen and oxygen hydrogen and carbon hydrogen, oxygen,
    6·2 answers
  • When a submarine dives to a depth of 5.0 × 102 m, how much pressure, in pa, must its hull be able to withstand? how many times l
    12·2 answers
  • About three billion years ago, single-celled organisms called cyanobacteria lived in Earth’s oceans. They thrived on the ocean’s
    12·2 answers
  • The Sun is the primary source of energy for ecosystems. The Sun emits . When an organism obtains nutrients by feeding on other o
    7·2 answers
  • For this exercise, use the position function s(t) = −4.9t2 + 250, which gives the height (in meters) of an object that has falle
    10·1 answer
  • Identical guns fire identical bullets horizontally at the same speed from the same height above level planes, one on the Earth a
    7·1 answer
  • A barge is 10.0 m wide and 60.0 m long and has vertical sides. The bottom of the hull is 12.0 m below the water surface. What ar
    8·1 answer
  • A stubborn, 100 kgkg mule sits down and refuses to move. To drag the mule to the barn, the exasperated farmer ties a rope around
    13·1 answer
  • To practice Problem-Solving Strategy 25.1 Power and Energy in Circuits. A device for heating a cup of water in a car connects to
    5·1 answer
  • Recall that in the equilibrium position, the upward force of the spring balances the force of gravity on the weight. Use this co
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!