The total energy (also called mechanical energy) is the sum of the kinetic energy and potential energy:

For this pendulum, we see that at t=0.60 s the total energy is TE=0.918 J while the potential energy is 0.054 J, so the kinetic energy (the missing value in the table) is
Answer:

Explanation:
Given:
- mass of car,

- distance of skidding after the application of brakes,

- coefficient of kinetic friction,

<u>So, the energy dissipated during the skidding of car:</u>
<em>Frictional force:</em>

where N = normal reaction by ground on the car


<em>Now from the work-energy equivalence:</em>


is the dissipated energy.
Answer:
33.68 N
Explanation:
Data
W= 32J
d- 0.95m
F= ?
W=Fd
They are asking for the magnitude which is the force, so you need to solve for force.
F=W/d
= 32J/ 0.95m
= 33.68 N
Answer:
option (E) 1,000,000 J
Explanation:
Given:
Mass of the suspension cable, m = 1,000 kg
Distance, h = 100 m
Now,
from the work energy theorem
Work done by the gravity = Work done by brake
or
mgh = Work done by brake
where, g is the acceleration due to the gravity = 10 m/s²
or
Work done by brake = 1000 × 10 × 100
or
Work done by brake = 1,000,000 J
this work done is the release of heat in the brakes
Hence, the correct answer is option (E) 1,000,000 J
Answer:
The answer is "
"
Explanation:
The formula for velocity:

