Answer:

Explanation:
To solve this problem we use the Momentum's conservation Law, before and after the girl catch the ball:
(1)
At the beginning the girl is stationary:
(2)
If the girl catch the ball, both have the same speed:
(3)
We replace (2) and (3) in (1):

We can now solve the equation for v_{f}:

Answer:
w = √ 1 / CL
This does not violate energy conservation because the voltage of the power source is equal to the voltage drop in the resistence
Explanation:
This problem refers to electrical circuits, the circuits where this phenomenon occurs are series RLC circuits, where the resistor, the capacitor and the inductance are placed in series.
In these circuits the impedance is
X = √ (R² + (
-
)² )
where Xc and XL is the capacitive and inductive impedance, respectively
X_{C} = 1 / wC
X_{L} = wL
From this expression we can see that for the resonance frequency
X_{C} = X_{L}
the impedance of the circuit is minimal, therefore the current and voltage are maximum and an increase in signal intensity is observed.
This does not violate energy conservation because the voltage of the power source is equal to the voltage drop in the resistence
V = IR
Since the contribution of the two other components is canceled, this occurs for
X_{C} = X_{L}
1 / wC = w L
w = √ 1 / CL
<h2>
Answer: B. Gravitational potential energy </h2>
Explanation:
<em>The gravitational potential energy is the energy that a body or object possesses, due to its position in a gravitational field.
</em>
That is why this energy depends on the relative height of an object with respect to some point of reference and associated with the gravitational force.
In the case of the <u>Earth</u>, in which <u>the gravitational field is considered constant</u>, the value of the gravitational potential energy
will be:
Where
is the mass of the object,
the acceleration due gravity and
the height of the object.
As we can see, the value of
is directly proportional to the height.
Answer:
719
Explanation:
Conversion
1 picometer (pm) is equivalent to
meter
1 micrometer is equivalent to
meter
To find the number of layers, we divide the overal leaf thickness by the thickness of one atom hence dividing tex]0.125 × 10^{-6}[/tex] meter by
meter we get that the number of sheets will be as follows

Therefore, they are approximately 719 sheets
D:the electrons from being attracted to the grid instead of the anode