answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Thepotemich [5.8K]
1 year ago
6

A blacksmith heats a 1,540 g iron horseshoe to a temperature of 1445°c before dropping it into 4,280 g of water at 23.1°c. if th

e specific heat of iron is 0.4494 j / g °c, and the water absorbs 947,000 j of energy from the horseshoe, what is the final temperature of the horseshoe-water system after mixing
Physics
1 answer:
Marta_Voda [28]1 year ago
3 0
Given:
m₁ = 1540 g, mass of iron horseshoe
T₁ = 1445 °C, initial temperature of horseshoe
c₁ = 0.4494 J/(g-°C), specific heat

m₂ = 4280 g, mass of water
T₂ = 23.1 C, initial temperature of water
c₂ = 4.18 J/(g-°C), specific heat of water
L = 947,000 J heat absorbed by the water.

Let the final temperature be T °C.
For energy balance,
m₁c₁(T₁ - T) = m₂c₂(T - T₂) + L
(1540 g)*(0.4494 J/(g-C))*(1445-T C) = (4280 g)*(4.18 J/(g-C))*(T-23.1 C) + 947000 J
692.076(1445 - T) = 17890(T - 23.1) + 947000
10⁶ - 692.076T = 17890T - 413259 + 947000
466259 = 18582.076T
T = 25.09 °C

Answer: 25.1 °C
You might be interested in
Consider a point on a bicycle wheel as the wheel makes exactly four complete revolutions about a fixed axis. Compare the linear
dezoksy [38]

Answer:

Explanation:

Wheel completes four revolution.

The linear displacement is zero.

The angular displacement is 4 x 2π = 8π radian.

So, option (c) is correct.

4 0
2 years ago
Paul and Ivan are riding a tandem bike together. They’re moving at a speed of 5 meters/second. Paul and Ivan each have a mass of
Sonbull [250]
The formula is Ke = 1/2 m v^2
The two of them together have a Ke of mv^2. So you either increase m or v. That's what makes the problem difficult. He can do D or B. We have to choose.

A is no solution. The Ke goes down because Paul loses Ivan's mass.
C is out of the question 3 meters/sec is a big reduction from 5 m/s. So now what do we do about B and D?

The question is what does the third person add. The tandoms I've peddled only allow for 1 or 2 people to add to the motion. So the third person only adds mass. He does not have a v that he is contributing to. To say that he is going 5m/s is true, but he's not contributing anything to that motion.

I pick B, but it is one of those questions that the correctness of it is in the head of the proposer. Be prepared to get it wrong. Argue the point politely if you agree with me, but back off as soon as you have presented your case.

B <<<<====== answer. 
5 0
2 years ago
Read 2 more answers
g A 4 cm diameter "bobber" with a mass of 3 grams floats on a pond. A thin, light fishing line is tied to the bottom of the bobb
Law Incorporation [45]

Answer:

Explanation:

total weight acting downwards

= 3g + 10g

13 g

volume of lead = 10 / 11.3 = .885 cm³

Let the volume of bobber submerged in water be v in floating position . buoyant force on bobber  = v x 1 x g

Buoyant force on lead =  .885 x 1 x g

total buoyant force = vg + .885 g

For floating

vg + .885 g  = 13 g

v = 12.115 cm³

total volume of bobber

= 4/3 x 3.14 x 2³

= 33.5 cm³

fraction of volume submerged

= 12.115  / 33.5

= .36  

= 36 %

4 0
2 years ago
an ice skater, standing at rest, uses her hands to push off against a wall. she exerts an average force on the wall of 120 N and
natulia [17]

Answer:

The skater's speed after she stops pushing on the wall is 1.745 m/s.

Explanation:

Given that,

The average force exerted on the wall by an ice skater, F = 120 N

Time, t = 0.8 seconds

Mass of the skater, m = 55 kg

It is mentioned that the initial sped of the skater is 0 as it was at rest. The change in momentum of skater is :

\Delta p=m(v-u)\\\\\Delta p=mv

The change in momentum is equal to the impulse delivered. So,

J=\Delta p=F\times t\\\\mv=F\times t\\\\v=\dfrac{Ft}{m}\\\\v=\dfrac{120\times 0.8}{55}\\\\v=1.745\ m/s

So, the skater's speed after she stops pushing on the wall is 1.745 m/s.                      

4 0
1 year ago
How much heat Q1 is transferred by 25.0 g of water onto the skin? To compare this to the result in the previous part, continue t
hodyreva [135]

Answer:

The heat transferred  from water to skin  is 6913.5 J.

Explanation:

Given that,

Weight of water = 25.0 g

Suppose that water and steam, initially at 100°C, are cooled down to skin temperature, 34°C, when they come in contact with your skin. Assume that the steam condenses extremely fast. We will further assume a constant specific heat capacity c=4190 J/(kg°K) for both liquid water and steam.

We need to calculate the heat transferred  from water to skin

Using formula for stream

Q=mc\Delta T

Put the value into the formula

Q=25\times10^{-3}\times4190\times(373-307)

Q=6913.5\ J

Hence, The heat transferred  from water to skin  is 6913.5 J.

3 0
2 years ago
Other questions:
  • During action potential, the electrical charge inside the neuron is __________ the electrical charge outside the neuron.
    9·2 answers
  • A horse does 860 j of work in 420 seconds while pulling a wagon. what is the power output of the horse? round your answer to the
    12·2 answers
  • If the volume of an object is reported as 5.0 ft3 what is the volume in cubic meters
    15·1 answer
  • When a light wave enters into a medium of different optical density,
    6·1 answer
  • One end of a rope is tied to the handle of a horizontally-oriented and uniform door. a force fis applied to the other end of the
    9·2 answers
  • student uses a magnet to move a 0.025 kg metal ball magnet exerts a force of 5N which causes the ball to begin moving what is th
    11·1 answer
  • An ambulance moving at 42 m/s sounds its siren whose frequency is 450 hz. a car is moving in the same direction as the ambulance
    13·1 answer
  • A ball of mass 0.4 kg is initially at rest on the ground. It is kicked and leaves the kicker's foot with a speed of 5.0 m/s in a
    10·1 answer
  • A 1.45 kg falcon catches a 0.515 kg dove from behind in midair. What is their velocity after impact if the falcon's velocity is
    5·1 answer
  • Newton's rings are visible when a planoconvex lens is placed on a flat glass surface. For a particular lens with an index of ref
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!