answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Thepotemich [5.8K]
2 years ago
6

A blacksmith heats a 1,540 g iron horseshoe to a temperature of 1445°c before dropping it into 4,280 g of water at 23.1°c. if th

e specific heat of iron is 0.4494 j / g °c, and the water absorbs 947,000 j of energy from the horseshoe, what is the final temperature of the horseshoe-water system after mixing
Physics
1 answer:
Marta_Voda [28]2 years ago
3 0
Given:
m₁ = 1540 g, mass of iron horseshoe
T₁ = 1445 °C, initial temperature of horseshoe
c₁ = 0.4494 J/(g-°C), specific heat

m₂ = 4280 g, mass of water
T₂ = 23.1 C, initial temperature of water
c₂ = 4.18 J/(g-°C), specific heat of water
L = 947,000 J heat absorbed by the water.

Let the final temperature be T °C.
For energy balance,
m₁c₁(T₁ - T) = m₂c₂(T - T₂) + L
(1540 g)*(0.4494 J/(g-C))*(1445-T C) = (4280 g)*(4.18 J/(g-C))*(T-23.1 C) + 947000 J
692.076(1445 - T) = 17890(T - 23.1) + 947000
10⁶ - 692.076T = 17890T - 413259 + 947000
466259 = 18582.076T
T = 25.09 °C

Answer: 25.1 °C
You might be interested in
A closed, rigid container holding 0.2 moles of a monatomic ideal gas is placed over a Bunsen burner and heated slowly, starting
Georgia [21]

Answer:

a) 2250 J

b) 0 J

c) 2250 J

Explanation:

a) Since, the process is isochoric

the change in internal energy

\Delta U = n C_v(T_f-T_i)

Here, n = 0.2 moles

Cv = 12.5 J/mole.K

We have to find T_f so we can use gas equation as

\frac{P_1V_1}{P_2V_2} =\frac{T_i}{T_f}\\Since, V_1=V_2    [isochoric/process]\\\Rightarrow \frac{P_{atm}}{4P_{atm}} = \frac{300}{T_f} \\\Rightarrow T_f = 1200 K

So,  \Delta U= 0.2\times12.5(1200-300)\\=2250 J

b) Since, the process is isochoric no work shall be done.

c) By first law of thermodynamics we have

\Delta U = Q-W\\Since, W = 0\\\Delta U = Q\\Therefore, Q = 2250 J

Since, Q is positive 2250 J of heat will flow into the system.

6 0
2 years ago
A skydiver finds that she speeds up when she holds her arms close to her body. What does this do?
ArbitrLikvidat [17]

D. Reduces the force of air resistance

7 0
2 years ago
Read 2 more answers
Question 8 (4 points)
katrin2010 [14]

Answer:

The answer to your question is:

Explanation:

Data

Duane                                          Albert

d = 5 m ;  v = 3 m/s                     v = 4.2 m/s

a)                                                b)

Duane's                                      Albert's

d = 5 + (3)t                                  d = 4.2t

d = 5 + 3t

c)                            5 + 3t = 4.2t

                              4.2t - 3t = 5

                                      1.2t = 5

                                           t = 4.17 s

d)

Duane's

d= 5 + 3(4.17)

d = 17.51 m

Alberts

d = 4.2(4.17)

d = 17.51 m

4 0
2 years ago
Read 2 more answers
The electric potential in a particular region of space varies only as a function of y-position and is given by the function V(y)
nikdorinn [45]

Answer:

E = 55.9583\ Volts/meter

Explanation:

First let's find the electric potential using y = 22.5:

V(y) = 1.69y^2 +15.6y+52.5

V(22.5) = 1.69(22.5)^2 + 15.6*22.5 + 52.5

V(22.5) = 1259.0625\ Volts

Then, to find the magnitude of the electric field, we just need to divide the electric potential by the distance y:

E = V/d

E = 1259.0625/22.5

E = 55.9583\ Volts/meter

3 0
2 years ago
Suppose you first walk 12.0 m in a direction 20 owest of north and then 20.0 m in a direction 40.0osouth of west. How far are yo
alexgriva [62]

Answer:

R=19.5m

\theta = 4.65° S of W

Explanation:

Refer the attached fig.

displacement  of the x and y components

x-component displacement is (R_{x}) = A_{x}+B_{x}

= A \sin(20°) + B \cos(40°)

= -12.0\sin(20°) + 20.0\cos(40°)

= -19.425m

x-component displacement is (R_{y}) = A_{y}+ B_{y}

=  A \cos(20°) - B \sin(40°)

= 12.0\cos(20°) - 20.0\sin(40°)

= -1.579

resultant displacement

∴

R = \sqrt{R_{x}^{2} +R_{y}^{2} }  }

=\sqrt{(-19.425)^{2}+(-1.579)^{2}  }

=19.5m

\theta = \tan^{-1}\left | \frac{R_{x}}{R_{y}} \right |

\theta = \tan^{-1}\left | \frac{1.579}{19.425} \right |

\theta = 4.65° S of W

6 0
2 years ago
Other questions:
  • A cement factory emits 900 kilograms of CO2 to produce 1,000 kilograms of cement. A fully grown tree removes six kilograms of CO
    13·2 answers
  • Which field in an 802.11a plcp frame are used to initialize part of the transmitter and receiver circuits?
    8·1 answer
  • a stone is projected vertically up from the top of a tower 73.5m with velocity 24.5 m/s . find the time taken by the stone to re
    11·1 answer
  • A body covers a semicircle of radius 7cm in 5s .find its linear speed
    9·1 answer
  • An object pulled to the right by two forces has an acceleration of 2.5 m/s2. The free-body diagram shows the forces acting on th
    14·2 answers
  • A student, along with her backpack on the floor next to her, are in an elevator that is accelerating upward with acceleration a.
    12·1 answer
  • A beam of unpolarized light shines on a stack of five ideal polarizers, set up so that the angles between the polarization axes
    12·1 answer
  • series RC circuit is built with a 15 kΩ resistor and a parallel-plate capacitor with 18-cm-diameter electrodes. A 18 V, 36 kHz s
    11·1 answer
  • A bicyclist travels the first 800 m of a trip 1.4 minutes, the next 500 m in 1.6 minutes, and finishes up the final 1200 m in 2
    6·1 answer
  • A wildebeest and chicken participate in a race over a 2.00km long course. the wildebeest travels at a speed of 16.0m/s and chick
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!