answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DiKsa [7]
2 years ago
10

Whipple is confused about the connection between the velocity and acceleration of the tennis ball. he decides to compare the vel

ocity of the ball and the acceleration of the ball at the apex of the ball's motion while varying the speed of the elevator. he runs the experiment for a wide range of positive speeds of the elevator and records the speed and acceleration of the ball at the top of its motion. what can whipple conclude from these data? the speed of the ball is always positive and the acceleration is always equal to −g at the instant the ball reaches the top of its motion. the speed of the ball and the acceleration are both zero when the ball reaches the top of its motion. the speed of the ball is always zero and the acceleration is always −g at the instant the ball reaches the top of its motion. the speed of the ball is always negative and the acceleration is always equal to −g at the instant the ball reaches the top of its motion.
Physics
1 answer:
tamaranim1 [39]2 years ago
7 0

The speed of the ball is always zero and the acceleration is always -g when it reaches the top of its motion. This is because when the ball is free, only gravity acts on it which is always downwards, hence g is the net acceleration and it is always negative. However the velocity does not direction change instantly, negative acceleration first slows down the ball with a positive velocity, until that point the ball keeps moving up, then the ball velocity becomes zero just before changing direction and becoming negative after which the ball will now go down along gravity. Hence the ball velocity is zero at the top (neither going up nor down). Mathematically this can be seen as velocity is the integration of acceleration.

You might be interested in
How many slices of bread did each climber have to eat to compensate for the increase of the gravitational potential energy of th
N76 [4]

Answer:

So No of slices to be consumed by each person = n = 65

Explanation:

Energy released by one slice = E1

E1=10^6\ J

h = 8850 m ; m = 79 kg ,η= 10.5%

We know that potential energy given as

u = m g h

u = 79 x 9.81 x 8850

u=6.8\times 10^6\ J

we know from the defination of efficiency that,  η= E(out)/E(in)

Now amount of PE has to be compensated, In our case, E(out) =u

0.105=\dfrac{E(out)}{E(in)}

0.105=\dfrac{6.8\times 10^6}{E(in)}

E(in)=64.76\times 10^6\ J

Let n be the number of bread slices to be consumed.

n = E(in)/E1

n=\dfrac{64.76\times 10^6}{10^6}

n=64.76

So No of slices to be consumed by each person = n = 65

3 0
2 years ago
A 5-kg concrete block is lowered with a downward acceleration of 2.8 m/s2 by means of a rope. The force of the block on the Eart
maksim [4K]

When the body touches the ground two types of Forces will be generated. The Force product of the weight and the Normal Force. This is basically explained in Newton's third law in which we have that for every action there must also be a reaction. If the Force of the weight is pointing towards the earth, the reaction Force of the block will be opposite, that is, upwards and will be equivalent to its weight:

F = mg

Where,

m = mass

g = Gravitational acceleration

F = 5*9.8

F = 49N

Therefore the correct answer is E.

5 0
2 years ago
A student uses an electronic force sensor to study how much force the student’s finger can apply to a specific location. The stu
melisa1 [442]

Answer:

B. Trial 2

Explanation:

Trial 2, because the student’s finger applied the largest force to the sensor.

Because the trial 2 student finger applied to largest force.

7 0
2 years ago
Read 2 more answers
The newly formed xenon nucleus is left in an excited state. Thus, when it decays to a state of lower energy a gamma ray is emitt
nevsk [136]

Answer:3.87*10^-4

Explanation:

What is the decrease in mass, delta mass Xe , of the xenon nucleus as a result of this deca

We have been given the wavelength of the gamma ray, find the frequency using c = freq*wavelength.

C=f*lambda

3*10^8=f*3.44*10^-12

F=0.87*10^20 hz

Then with the frequency, find the energy emitted using equation

E=hf E = freq*Plank's constant

E=.87*10^20*6.62*10^-34

E=575.94*10^(-16)

With this energy, convert into MeV from joules.

With the energy in MeV, use E=mc^2 using c^2 = 931.5 MeV/u.

Plugging and computing all necessary numbers gives you

3.87*10^-4 u.

6 0
2 years ago
A stretched spring has 5184 J of elastic potential energy and a spring constant of 16,200 N/m. What is the displacement of the s
Bezzdna [24]

Hello!

A stretched spring has 5184 J of elastic potential energy and a spring constant of 16,200 N/m. What is the displacement of the spring?

0.57 m

0.64 m  

0.80 m  

1.25 m

Data:

E_{pe}\:(elastic\:potential\:energy) = 5184\:J

K\:(constant) = 16200\:N/m

x\:(displacement) =\:?

For a spring (or an elastic), the elastic potential energy is calculated by the following expression:

E_{pe} = \dfrac{k*x^2}{2}

Where k represents the elastic constant of the spring (or elastic) and x the deformation or displacement suffered by the spring.

Solving:  

E_{pe} = \dfrac{k*x^2}{2}

5184 = \dfrac{16200*x^2}{2}

5184*2 = 16200*x^2

10368 = 16200\:x^2

16200\:x^2 = 10368

x^{2} = \dfrac{10368}{16200}

x^{2} = 0.64

x = \sqrt{0.64}

\boxed{\boxed{x = 0.8\:m}}\end{array}}\qquad\checkmark

Answer:  

The displacement of the spring = 0.8 m (or 0.80 m)

_________________________________________

I Hope this helps, greetings ... Dexteright02! =)

8 0
2 years ago
Read 2 more answers
Other questions:
  • A bridge is made with segments of concrete 50 m long. If the linear expansion coefficient is 12  10–6 (°C)–1 , how much spacing
    5·1 answer
  • Calculate the amount of energy produced in a nuclear reaction in which the mass defect is 0.187456 amu.
    13·2 answers
  • A roller coaster travels 200 feet horizontally and then rises 135 feet at an angle of 30 degrees above the ground. What is the m
    7·1 answer
  • How did Newton use creativity and logic in his approach to investigating light?
    15·2 answers
  • A baseball pitcher throws a ball at 90.0 mi/h in the horizontal direction. How far does the ball fall vertically by the time it
    7·1 answer
  • Assume that you stay on the Earth's surface. What is the ratio of the sun's gravitational force on you to the earth's gravitatio
    9·1 answer
  • A calorimeter has a heat capacity of 1265 J/oC. A reaction causes the temperature of the calorimeter to change from 22.34oC to 2
    14·2 answers
  • Our eyes are typically 6 cm apart. Suppose you are somewhat unique, and yours are 9.50 cm apart. You see an object jump from sid
    7·1 answer
  • What is the concentration of molecular oxygen (O2) in mol/L on a June day in Toronto when atmospheric pressure is 1.0 atm and th
    15·1 answer
  • The maximum tension that a 0.80 m string can tolerate is 15 N. A 0.35-kg ball attached to this string is being whirled in a vert
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!