Answer:
Show attached picture
Explanation:
Let's call V the voltage provided by the battery in the circuit. M is the multimeter (let's call
its internal resistance) and R indicates the resistance of the light bulb.
We know that the meter's internal resistance is 1000 times higher than the bulb's resistance:
(1)
Both the meter and the bulb are connected in parallel to the battery, so they both have same potential difference at their terminals:

Using Ohm's law,
, we can rewrite the previous equation as:

where
is the current in the meter
is the current in the bulb
Using (1), this equation becomes

so, the current in the meter is 1000 times less than through the bulb.
Answer:
part a : <em>The dry unit weight is 0.0616 </em>
<em />
part b : <em>The void ratio is 0.77</em>
part c : <em>Degree of Saturation is 0.43</em>
part d : <em>Additional water (in lb) needed to achieve 100% saturation in the soil sample is 0.72 lb</em>
Explanation:
Part a
Dry Unit Weight
The dry unit weight is given as

Here
is the dry unit weight which is to be calculated- γ is the bulk unit weight given as

- w is the moisture content in percentage, given as 12%
Substituting values

<em>The dry unit weight is 0.0616 </em>
<em />
Part b
Void Ratio
The void ratio is given as

Here
- e is the void ratio which is to be calculated
is the dry unit weight which is calculated in part a
is the water unit weight which is 62.4
or 0.04 
- G is the specific gravity which is given as 2.72
Substituting values

<em>The void ratio is 0.77</em>
Part c
Degree of Saturation
Degree of Saturation is given as

Here
- e is the void ratio which is calculated in part b
- G is the specific gravity which is given as 2.72
- w is the moisture content in percentage, given as 12% or 0.12 in fraction
Substituting values

<em>Degree of Saturation is 0.43</em>
Part d
Additional Water needed
For this firstly the zero air unit weight with 100% Saturation is calculated and the value is further manipulated accordingly. Zero air unit weight is given as

Here
is the zero air unit weight which is to be calculated
is the water unit weight which is 62.4
or 0.04 
- G is the specific gravity which is given as 2.72
- w is the moisture content in percentage, given as 12% or 0.12 in fraction

Now as the volume is known, the the overall weight is given as

As weight of initial bulk is already given as 4 lb so additional water required is 0.72 lb.
Answer:
14.7 m/s
Explanation:
a = acceleration experienced by driver's head = 50 g = 50 x 9.8 m/s² = 490 m/s²
v₀ = initial speed of the driver = 0 m/s
v = final speed of the driver after 30 ms
t = time interval for which the acceleration is experienced = 30 ms = 0.030 s
Using the equation
v = v₀ + a t
Inserting the values
v = 0 + (490) (0.030)
v = 14.7 m/s
(a) 
The radiation pressure exerted by an electromagnetic wave on a surface that totally absorbs the radiation is given by

where
I is the intensity of the wave
c is the speed of light
In this problem,

and substituting
, we find the radiation pressure

(b) 
Since we know the cross-sectional area of the laser beam:

starting from the radiation pressure found at point (a), we can calculate the force exerted on a tritium atom:

And then, since we know the mass of the atom

we can find the acceleration, by using Newton's second law:

Answer:
The atomic weight in g/mole of the metal (molar mass) is 8.87.
Explanation:
To begin, it is possible to assume that, as a sample, it has 100 g of the compound. This means that:
- 52.92% metal: 52.92 g M
- 47.80% oxygen: 47.80 g O
Using the molar mass of oxygen, which is 16 g / mol, it is possible to calculate the amount of moles of oxygen present in the sample using the rule of three:

moles of oxygen=2.9875
The chemical formula of metal oxide tells you that:
2 M⁺³ + 3 O²⁻ ⇒ M₂O₃
In the previous equation you can see that you need 3 oxygen anions to react with two metal cations. Then:

You have 52.92 g of metal in the sample, then the molar mass of the metal is:

molar mass≅ 8.87 g/mol
<u><em> The atomic weight in g/mole of the metal (molar mass) is 8.87.</em></u>
The closest match to this value is Beryllium (Be), which has an atomic mass of 9.0122 g / mol.