answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
inn [45]
2 years ago
9

A machine is currently set to a feed rate of 5.921 inches per minute (IPM). Te machinist changes this setting to 6.088 IPM. By h

ow much did the machinist increase the feed rate
Physics
2 answers:
LekaFEV [45]2 years ago
6 0

Explanation:

Given that,

Current feed rate of a machine is 5.921 IPM

Final feed rate of the machine is 6.088 IPM

To find,

Increase in feed rate

Solution,

We need to find the increase in feed rate of the machine. It is calculated simply by subtracting final feed rate to the initial feed rate as :

Increase in feed rate = 6.088 IPM - 5.921 IPM

Increase in feed rate = 0.167 IPM

or

Increase in feed rate = 16.7 %

So, the increase in feed rate of the machine is 0.167 IPM or 16.7 %

lukranit [14]2 years ago
4 0

Answer:

By 16.7% or 0.167 IPM

Explanation:

Substracting the final IPM (6.088) to the initial IPM (5.921) gives us the net difference, which is how much did it increase in IPM. Multiplying this number by 100 gives us the percentual increase in the feed rate.

You might be interested in
If I0 is the intensity of the unpolarized light incident on the first polarizer, and I1 and I2 denote the intensity of the light
e-lub [12.9K]
E or C 10 hope this helps
7 0
2 years ago
7. A mother pushes her 9.5 kg baby in her 5kg baby carriage over the grass with a force of 110N @ an angle
jasenka [17]

Weight of the carriage =(m+M)g =142.1\ N

Normal force =Fsin(\theta) + W = 197.1\ N

Frictional force =\mu N=27.59\ N

Acceleration =4.66\ m\ s^{-2}

Explanation:

We have to look into the FBD of the carriage.

Horizontal forces and Vertical forces separately.

To calculate Weight we know that both the mass of the baby and the carriage will be added.

  • So Weight(W) =(m+M)\times g =(9.5+5)\ kg \times 9.8 =142.1\ Newton\ (N)

To calculate normal force we have to look upon the vertical component of forces, as Normal force is acting vertically.We have weight which is a downward force along with F_x, force of 110\ N acting vertically downward.Both are downward and Normal is upward so Normal force =Summation\ of\ both\ forces

  • Normal force (N) = Fsin(\theta)+W=110sin(30) + 142.1 =197.1\ N
  • Frictional force (f) =\mu N=0.14\times 197.1 =27.59\ N

To calculate acceleration we will use Newtons second law.

That is Force is product of mass and acceleration.

We can see in the diagram that F_y=Horizontal and F_x=Vertical component of forces.

So Fnet = Fy(Horizontal) - f(friction) = m\times a

  • Acceleration (a) =\frac{Fcos(\theta)-\mu N}{mass(m)} =\frac{(95.26-27.59)}{14.5}= 4.66\ m\ s{^2 }

So we have the weight of the carriage, normal force,frictional force and acceleration.

3 0
2 years ago
Explain how the forces need to change so the aeroplane can land
Fofino [41]
When an airplane is flying straight and level at a constant speed, the lift it produces balances its weight, and the thrust it produces balances its drag. However, this balance of forces changes as the airplane rises and descends, as it speeds up and slows down, and as it turns.
7 0
2 years ago
A cart, which has a mass of 2.30 kg is sitting at the top of an inclined plane, which is 4.50 meters long and meets the horizont
expeople1 [14]

Answer:

a) The gravitational potential energy before the cart rolls down the incline is 24.6 J.

b) The magnitude of the force that causes the cart to roll down is 5.47 N.

c) The acceleration of the cart is 2.38 m/s²

d) It takes the cart 1.94 s to reach the bottom of the incline.

e) The velocity of the cart at the bottom of the inclined plane is 4.62 m/s.

f) The kinetic energy of the cart as it reaches the bottom of the incline is 24.6 J.

g) The work done by the gravitational force is 24.6 J.

Explanation:

Hi there!

a) The gravitational potential energy is calculated using the following equation:

EP = m · g · h

Where:

EP = gravitational potential energy.

m = mass of the object.

g = acceleration due to gravity.

h = height at which the object is located.

The height of the inclined plane can be calculated using trigonomoetry:

sin 14.0° = height / lenght

sin 14.0° = height / 4.50 m

4.50 m · sin 14.0° = height

height = 1.09 m

Then, the gravitational potential energy will be:

EP = m · g · h

EP = 2.30 kg · 9.81 m/s² · 1.09 m = 24.6 J

The gravitational potential energy before the cart rolls down the incline is 24.6 J.

b) Please, see the attached figure for a graphical description of the problem and the forces acting on the cart. The force that causes the cart to accelerate down the incline is the horizontal component of the weight (Fwx in the figure). The magnitude of this force can be obtained using trigonometry:

sin 14° = Fwx / Fw

The weight of the cart (Fw) is calculated as follows:

Fw = m · g

Fw = 2.30 kg · 9.81 m/s²

Fw = 22.6 N

Then, the x-component of the weight will be:

FW · sin 14° = Fwx

22.6 N · sin 14° = Fwx

Fwx = 5.47 N

The magnitude of the force that causes the cart to roll down is 5.47 N.

c)Using the equation of Fwx we can calculate the acceleration of the cart:

Fwx = m · a

Where "m" is the mass of the cart and "a" is the acceleration.

Fwx / m = a

5.47 N / 2.30 kg = a

a = 2.38 m/s²

The acceleration of the cart is 2.38 m/s²

d) To calculate the time it takes the cart to reach the bottom of the incline, let´s use the equation of position of the cart:

x = x0 + v0 · t + 1/2 · a · t²

Where:

x = position of the cart at time t.

x0 = initial position.

v0 = initial velocity.

a = acceleration.

t = time.

Considering the initial position as the point at which the cart starts rolling (x0 = 0) and knowing that the cart starts from rest (v0 = 0), let´s find the time it takes the cart to travel the 4.50 m of the inclined plane:

x = 1/2 · a · t²

4.50 m = 1/2 · 2.38 m/s² · t²

2 · 4.50 m / 2.38 m/s² = t²

t = 1.94 s

It takes the cart 1.94 s to reach the bottom of the incline.

e) The velocity of the cart at the bottom of the inclined plane can be obtained using the following equation:

v = v0 + a · t

v = 0 m/s + 2.38 m/s² · 1.94 s

v = 4.62 m/s

The velocity of the cart at the bottom of the inclined plane is 4.62 m/s.

f) The kinetic energy can be calculated using the following equation:

KE = 1/2 · m · v²

Where:

KE =  kinetic energy.

m = mass of the cart.

v = velocity of the cart.

KE = 1/2 · 2.30 kg · (4.62 m/s)²

KE = 24.6 J

The kinetic energy of the cart as it reaches the bottom of the incline is 24.6 J.

The gain of kinetic energy is equal to the loss of gravitational potential energy.

g) The work done by the gravitational force can be calculated using the work-energy theorem: the work done by the gravitational force is equal to the negative change in the gravitational potential energy:

W = -ΔPE

W = -(final potential energy - initial potential energy)

W = -(0 - 24.6 J)

W = 24.6 J

This can also be calculated using the definition of work:

W = Fw · d

Where "d" is the distance traveled in the direction of the force, that is the height of the inclined plane:

W = 22.6 N · 1.09 m = 24.6 J.

The work done by the gravitational force is 24.6 J.

4 0
2 years ago
Fill in the blanks to complete the statements.
Murljashka [212]

Answer:

When an object changes speed (increases/decreases) it results in acceleration/de acceleration, its velocity also changes.

Explanation:

Acceleration is the rate of change in velocity.An object can accelerate when speed increases, decreases or direction changes. All these instances involves a change in velocity.Velocity is a vector quantity thus it has magnitude and the direction.Acceleration due to change in direction is centripetal acceleration.The expression for finding acceleration is;

a=change in velocity/change in time

a=Δv/Δt in m/s²

3 0
2 years ago
Other questions:
  • In a bedridden patient recovering from a badly fractured femur, disuse atrophy in the thigh muscles is caused by _________.
    11·1 answer
  • A 0.5-kg ball accelerated at 50 m/s2<br> .<br><br> What force was applied?
    7·1 answer
  • A flat rectangular loop of wire carrying a 4.0-a current is placed in a uniform 0.60-t magnetic field. the magnitude of the torq
    13·1 answer
  • A turntable rotates counterclockwise at 76 rpm . A speck of dust on the turntable is at 0.47 rad at t=0. What is the angle of th
    10·1 answer
  • Consider steady-state conditions for one-dimensional conduction in a plane wall having a thermal conductivity k = 50 W/m · K and
    7·1 answer
  • A black, totally absorbing piece of cardboard of area A = 1.7 cm2 intercepts light with an intensity of 8.1 W/m2 from a camera s
    11·2 answers
  • A 85-kg person stands on one leg and 90% of the weight is supported by the upper leg connecting the knee and hip joint – the fem
    7·1 answer
  • A 0.025-kg block on a horizontal frictionless surface is attached to an ideal massless spring whose spring constant is The block
    11·1 answer
  • Maximum voltage produced in an AC generator completing 60 cycles in 30 sec is 250V. (a) What is period of armature? (b) How many
    6·1 answer
  • 1 Which requires more work, lifting a 10kg sack of<br> coal or lifting a 15kg bag of feathers?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!