Answer:
label A= radio waves, label C= infrared, Label D= visible Light, Label G= gamma rays.
Explanation:
hope it helped??
can i have a thanks, a 5 star, and a brainliest please
can we be friends
12000 m/s = 12 km/s. Now to go 380000 km, it will take some time. How much time is given in the formula 12km/s. You go 12 kilometers every second. So you take

and that gives you 31,666.666 seconds.
Answer:
The amount of gas that is to be released in the first second in other to attain an acceleration of 27.0 m/s2 is

Explanation:
From the question we are told that
The mass of the rocket is m = 6300 kg
The velocity at gas is being ejected is u = 2000 m/s
The initial acceleration desired is 
The time taken for the gas to be ejected is t = 1 s
Generally this desired acceleration is mathematically represented as

Here
is the rate at which gas is being ejected with respect to time
Substituting values

=> 
=> 
=> 
=> 
<span>As seen by Barbara, Neil is traveling at a velocity of 6.1 m/s at and angle of 76.7 degrees north from due west.
Let's assume that both Barbara and Neil start out at coordinate (0,0) and skate for exactly 1 second. Where do they end up?
Barbara is going due south at 5.9 m/s, so she's at (0,-5.9)
Neil is going due west at 1.4 m/s, so he's at (-1.4,0)
Now to see Neil's relative motion to Barbara, compute a translation that will place Barbara back at (0,0) and apply that same translation to Neil. Adding (0,5.9) to their coordinates will do this.
So the translated coordinates for Neil is now (-1.4, 5.9) and Barbara is at (0,0).
The magnitude of Neil's velocity as seen by Barbara is
sqrt((-1.4)^2 + 5.9^2) = sqrt(1.96 + 34.81) = sqrt(36.77) = 6.1 m/s
The angle of his vector relative to due west will be
atan(5.9/1.4) = atan(4.214285714) = 76.7 degrees
So as seen by Barbara, Neil is traveling at a velocity of 6.1 m/s at and angle of 76.7 degrees north from due west.</span>
Answer:
d. at the same velocity
Explanation:
I will assume the car is also travelling westward because it was stated that the helicopter was moving above the car. In that case, it depends where the observer is. If the observer is in the car, the helicopter would look like it is standing still ( because both objects have the same velocity). If the observer is on the side of the road, both objects would be travelling at the same velocity. Also recall that, velocity is a vector quantity; it is direction-aware. Velocity is the rate at which the position changes but speed is the rate at which object covers distance and it is not direction wise. Hence velocity is the best option.