answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
galben [10]
2 years ago
11

The wheel having a mass of 100 kg and a radius of gyration about the z axis of kz=300mm, rests on the smooth horizontal plane.a.

If the belt is subjected to a force of P=200N, determine the angular velocity of the wheel, three seconds after the force is applied.b. Determine the speed of its center of mass O, three seconds after the force is applied.
Physics
1 answer:
pickupchik [31]2 years ago
3 0

Answer:

a) 20 rad/s

b) 6 m/s

Explanation:

b) Force acting on the wheel is 200 N

mass of the wheel is 100 kg

From Newton's second law of motion, F = m × a

Where F is the net force acting on the body

m is mass of the body

a is the acceleration of the body

By substituting the values we get, a = 2 m/s²

As acceleration is constant, we can use the below formula for calculating the final velocity of the object

v = u + a × t

Where v is the final velocity

u is the initial velocity

a is the acceleration

t is the time taken

u = 0 (∵ it starts from rest)

By substituting the values we get

v = 0 + 2 × 3 = 6 m/s

∴ Speed of center of mass after 3 seconds = 6 m/s

a) As the wheel rotates about z-axis, radius of gyration will be the radius of wheel

∴ Radius of the wheel = 300 mm

Torque acting on the wheel about axis of rotation = 300 mm × 200 N =

60 N·m

Torque = (Moment of inertia) × (angular acceleration)

Assuming that the mass of spokes of the wheel to be negligible,

Moment of inertia of the wheel about axis of rotation = 100 × 300² × 10^{-6} = 9 kg·m²

Then,

60 = 9 × (angular acceleration)

∴ angular acceleration ≈ 6·67 rad/s²

As angular acceleration of the wheel is constant, we can use the below formula for calculation of final angular speed

w_{f} = w_{i} + α × t

Where

w_{f} is the final angular velocity

w_{i} is the initial angular velocity

α is the angular acceleration

t is the time taken

w_{i} is 0 (∵ initially it starts from rest)

By substituting the values we get

w_{f} = 6·67 × 3 = 20 rad/s

∴ Angular velocity of the wheel after three seconds = 20 rad/s

You might be interested in
Devonte pushes a wheelbarrow with 830 W of power. How much work is required to get the wheelbarrow across the yard in 11 s? Roun
xxMikexx [17]

Answer: 9130 joules

Explanation:

Workdone by wheelbarrow = ?

Time = 11 seconds

Power = 830 watts

Recall that power is the rate of doing work. Thus, power is workdone divided by time taken.

i.e Power = (workdone/time)

830 watts = Workdone / 11 seconds

Workdone = 830 watts x 11 seconds

Workdone = 9130 joules

Thus, 9130 joules of work is required to get the wheelbarrow across the yard.

8 0
2 years ago
Read 2 more answers
Ronald likes to use his erector set more than anything else.
Rashid [163]
C: Foreclosure. People in identity foreclosure have committed to an identity too soon. Often they have simply adopted the identity of a parent, close relative or respected friend.
5 0
2 years ago
Read 2 more answers
The newly formed xenon nucleus is left in an excited state. Thus, when it decays to a state of lower energy a gamma ray is emitt
nevsk [136]

Answer:3.87*10^-4

Explanation:

What is the decrease in mass, delta mass Xe , of the xenon nucleus as a result of this deca

We have been given the wavelength of the gamma ray, find the frequency using c = freq*wavelength.

C=f*lambda

3*10^8=f*3.44*10^-12

F=0.87*10^20 hz

Then with the frequency, find the energy emitted using equation

E=hf E = freq*Plank's constant

E=.87*10^20*6.62*10^-34

E=575.94*10^(-16)

With this energy, convert into MeV from joules.

With the energy in MeV, use E=mc^2 using c^2 = 931.5 MeV/u.

Plugging and computing all necessary numbers gives you

3.87*10^-4 u.

6 0
2 years ago
A car of mass 1100kg moves at 24 m/s. What is the braking force needed to bring the car to a halt in 2.0 seconds? N
LenaWriter [7]

13200N

Explanation:

Given parameters:

Mass = 1100kg

Velocity = 24m/s

time = 2s

unknown:

Braking force = ?

Solution:

The braking force is the force needed to stop the car from moving.

   Force  =  ma = \frac{mv}{t}

  m is the mass of the car

  v is the velocity

  t is the time taken

  Force = \frac{1100 x 24}{2} = 13200N

Learn more:

Force brainly.com/question/4033012

#learnwithBrainly

8 0
2 years ago
An inclined plane is made out of a short plank of wood. It is used to move a 300N box up onto a tabletop 1m above the floor. Wha
Ronch [10]

Answer:

<em>The purpose of an inclinded plane is to make easier to move objects to a certain height.</em>

The technology behind this is about the Work you need to use to move the object upwards. Basically, when we use an inclined plane, we are splitting the net force, making easier to move. All this means, the force needed to move the objecto up will be lower, due to the inclined plane.

So, if the force needed is lower, then the work is also lower, because the work done is defined as the product between the force applied and the distance traveled.

<em>In addition, if we have a longer inclined plane, that means the force needed is even lower,</em> beacuse the distance is increased, but the Work is the same, because it only depends on the initial and final point.

Therefore, in this case, the work would remain the same and the mechanical advantage would increase. As we said before, the work needed will be the same despite the force decreases, because the distance increases, remaining the work as a constant. And the mechanical advantage increases, because it's easier to move if the inclined plane is longer.

3 0
2 years ago
Read 2 more answers
Other questions:
  • A sound wave traveling eastward through air
    8·2 answers
  • Which of Newton's laws accounts for the following statement? "A force cannot act alone." first law second law third law
    7·2 answers
  • postal worker on a bicycle travels at an average speed of 4m/s for 3 minutes. Work out how far she travelled.
    7·2 answers
  • Jill puts her face in front of a convex mirror, 18 cm from the focal point of the mirror. If the focal point is located 12 cm fr
    9·2 answers
  • A long-distance swimmer is able to swim through still water at 4.0 km/h. She wishes to try to swim from Port Angeles, Washington
    5·1 answer
  • A cyclist moving with a constant velocity of 6.0 m/s forward passes a car that is just starting. If the car has a constant accel
    14·1 answer
  • The air in a pipe resonates at 150 Hz and 750 Hz, one of these resonances being the fundamental. If the pipe is open at both end
    6·1 answer
  • A toroidal solenoid has an inner radius of 12.0 cm and an outer radius of 15.0 cm . It carries a current of 1.50 A . Part A How
    15·1 answer
  • Two moles of an ideal gas at 3.0 atm and 10 °C are heated up to
    8·1 answer
  • A man holds a rectangular card in front of and parallel to a plane mirror. In order for him to see the entire image of the card,
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!