Answer:
The atomic weight in g/mole of the metal (molar mass) is 8.87.
Explanation:
To begin, it is possible to assume that, as a sample, it has 100 g of the compound. This means that:
- 52.92% metal: 52.92 g M
- 47.80% oxygen: 47.80 g O
Using the molar mass of oxygen, which is 16 g / mol, it is possible to calculate the amount of moles of oxygen present in the sample using the rule of three:

moles of oxygen=2.9875
The chemical formula of metal oxide tells you that:
2 M⁺³ + 3 O²⁻ ⇒ M₂O₃
In the previous equation you can see that you need 3 oxygen anions to react with two metal cations. Then:

You have 52.92 g of metal in the sample, then the molar mass of the metal is:

molar mass≅ 8.87 g/mol
<u><em> The atomic weight in g/mole of the metal (molar mass) is 8.87.</em></u>
The closest match to this value is Beryllium (Be), which has an atomic mass of 9.0122 g / mol.
Answer:
The skater's speed after she stops pushing on the wall is 1.745 m/s.
Explanation:
Given that,
The average force exerted on the wall by an ice skater, F = 120 N
Time, t = 0.8 seconds
Mass of the skater, m = 55 kg
It is mentioned that the initial sped of the skater is 0 as it was at rest. The change in momentum of skater is :

The change in momentum is equal to the impulse delivered. So,

So, the skater's speed after she stops pushing on the wall is 1.745 m/s.
Answer:
Kinetic energy is the amount of energy a object has while it's in motion, and thermal energy is heat energy. In this case when the heat rises in substances for example a solid it will transform into a liquid causing the molecules to move faster which is a increase of kinetic energy.
Explanation:
Answer:

Explanation:
given,
mass of spaceship(m) = 8600 Kg
Mass of earth = 5.972 x 10²⁴ Kg
position of movement of space ship
R₁ = 7300 Km
R₂ = 6700 Km
the kinetic energy of the spaceship increases by = ?
Increase in Kinetic energy = decrease in potential energy





Answer:
Final temperature will be 438.076 K
Explanation:
We have given temperature
Volume 
As there is no heat transfer so this is an adiabatic process
For and adiabatic process 
Here 
So 
