Answer:
Kathmandu
Explanation:
As the altitude get higher, the gravitational pull of the earth on the object increases, therefore, the mass is higher up above.
Answer:
3.5 N
Explanation:
Let the 0-cm end be the moment point. We know that for the system to be balanced, the total moment about this point must be 0. Let's calculate the moment at each point, in order from 0 to 100cm
- Tension of the string attached at the 0cm end is 0 as moment arm is 0
- 2 N weight suspended from the 10 cm position: 2*10 = 20 Ncm clockwise
- 2 N weight suspended from the 50 cm position: 2*50 = 100 Ncm clockwise
- 1 N stick weight at its center of mass, which is 50 cm position, since the stick is uniform: 1*50 = 50 Ncm clockwise
- 3 N weight suspended from the 60 cm position: 3*60 = 180 Ncm clockwise
- Tension T (N) of the string attached at the 100-cm end: T*100 = 100T Ncm counter-clockwise.
Total Clockwise moment = 20 + 100 + 50 + 180 = 350Ncm
Total counter-clockwise moment = 100T
For this to balance, 100 T = 350
so T = 350 / 100 = 3.5 N
Would presume you are asked to find the volume, since there is no second volume.
By General Gas Law:
P₁V₁/T₁ = P₂V₂/T₂
1.6 * 168 /255 = 1.3*V₂/285
V₂ = 1.6 * 168 * 285 / (1.3*255)
V₂ = 231.095
Final volume ≈ 231 cm³
Unlike acceleration and velocity, speed does not need to specify the direction of motion. Speed is a scalar quality.
Let me give you the procedure like this:
Lets say that F is the fraction of the rope hanging over the table
If its like that then we have to take into account that the <span>friction force keeping on table is given by the following formula:</span>
<span>Ff = u*(1-f)*m*g </span>
and we need to know aso that <span>gravity force pulling off the table Fg is given by this other formula:</span>
<span>Fg = f*m*g </span>
What you need to do is <span>Equate the two and solve for f: </span>
<span>f*m*g = u*(1-f)*m*g </span>
<span>=> f = u*(1-f) = u - uf </span>
<span>=> f + uf = u </span>
=> f = u/(1+u) = fraction of rope
With that you can find the answer