answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ExtremeBDS [4]
2 years ago
11

A variable-length air column is placed just below a vibrating wire that is fixed at both ends. The length of the air column, ope

n at one end, is gradually increased from zero until the first position of resonance is observed at ????=31.2 cm. The wire is 129 cm long and is vibrating in its third harmonic. If the speed of sound in air is 340 m/s, what is the speed of transverse waves in the wire? Assume that the displacement antinode in the air column is exactly at the open end.
Physics
1 answer:
pogonyaev2 years ago
4 0

Answer:

The speed of transverse waves in the wire is 234.26 m/s.

Explanation:

Given that,

Length of wire = 129 cm

Speed of sound in air = 340 m/s

First position of resonance = 31.2 cm

We need to calculate the wavelength

For pipe open at one end and closed at other, there is node at closed end and an anti node at open end for 1st resonance.

At 1st resonance,

L=\dfrac{\lambda}{4}

\lambda=4\times L

Put the value into the formula

\lambda=4\times31.2\times10^{-2}

\lambda=1.248\ m

We need to calculate the frequency of sound in pipe

Using formula of frequency

f=\dfrac{v}{\lambda}

Put the value into the formula

f=\dfrac{340}{1.248}

f=272.4\ Hz

We need to calculate the node distance

For the wire, there are 3 segments, so 4 nodes

Node-node distance ,

L=\dfrac{l}{3}

L = \dfrac{129}{3}

L=43\ cm

We need to calculate the wavelength of the wire

Using formula of length

L=\dfrac{\lambda}{2}

\lambda=L\times 2

Put the value into the formula

\lambda=43\times2

\lambda=86\ cm

We need to calculate the speed of the wave

Using formula of frequency

f=\dfrac{v}{\lambda}

v=f\times\lambda

Put the value into the formula

v=272.4\times86\times10^{-2}

v=234.26\ m/s

Hence, The speed of transverse waves in the wire is 234.26 m/s.

You might be interested in
Kenny and Candy decided to sit on a see-saw while visiting a local play park. Candy, of mass
pochemuha

Answer:

(i) 208 cm from the pivot

(ii) Move further from the pivot

Explanation:

(i) Sum of the moments about the pivot of the seesaw is zero.

∑τ = Iα

(50 kg) (10 N/kg) (2.5 m) + (60 kg) (10 N/kg) x = 0

1250 Nm + 600 N x = 0

x = -2.08 m

Kenny should sit 208 cm on the other side of the pivot.

(ii) To increase the torque, Kenny should move away from the pivot.

4 0
2 years ago
Suppose the truck that’s transporting the box In Example 6.10 (p. 150) is driving at a constant speed and then brakes and slows
Scorpion4ik [409]

Answer:

Friction acts in the opposite direction to the motion of the truck and box.

Explanation:

Let's first review the problem.

A moving truck applies the brakes, and a box on it does not slip.

Now when the truck is applying brakes, only it itself is being slowed down. Since the box is slowing down with the truck, we can conclude that it is friction that slows it down.

The box in the question tries to maintains its velocity forward when the brakes are applied. We can think of this as the box exerting a positive force relative to the truck when the brakes are applied. When we imagine this, we can also figure out where the static friction will act to stop this positive force. Friction will act in the negative direction. Or in other words, friction will act in the opposite direction to the motion of the truck and box. This explains why the box slows down with the truck, as friction acts to stop its motion.

5 0
1 year ago
Calculate the amount of work done to draw a current of 8A from a point at 100V to a point at 120V in 2 seconds?
Morgarella [4.7K]
Given:
I=8A
t=2second
Potential difference,V=120-100=20volt
Workdone=V×i×t
=20×8×2
=320 joule.
3 0
2 years ago
An older camera has a lens with a focal length of 60mm and uses 34-mm-wide film to record its images. Using this camera, a photo
lesya692 [45]

Answer:

24.71 mm

Explanation:

Distance is proportional to focal length, so

d∝f

which means

\frac{d'_1}{d'_2}=\frac{f_1}{f_2}

Magnification of first lens

M_2=-\frac{d'_1}{d_1}

                   and

M_2=\frac{h'_1}{h_1}

Similarly, magnification of second lens

M_2=-\frac{d'_2}{d_1}

                   and

M_2=\frac{h'_2}{h_1}

From the above equations we get

\frac{M_1}{M_2}=\frac{d'_1}{d_2'}

                   and

\frac{M_1}{M_2}=\frac{h'_1}{h_2'}

which means,

\frac{d'_1}{d_2'}=\frac{h'_1}{h_2'}

and

\frac{d'_1}{d_2'}=\frac{f_1}{f_2}

So, we get

\frac{f_1}{f_2}=\frac{h'_1}{h_2'}\\\Rightarrow f_2=f_1\times\frac{h_2'}{h'_1}\\\Rightarrow f_2=60\times\frac{14}{34}=24.71\ mm

∴ Focal length should this camera's lens is 24.71 mm

6 0
2 years ago
A 3.0-kg mass and a 5.0-kg mass hang vertically at the opposite ends of a very light rope that goes over an ideal pulley. If the
AleksAgata [21]

Answer:

acceleration = 2.4525‬ m/s²

Explanation:

Data: Let m1 = 3.0 Kg, m2 = 5.0 Kg, g = 9.81 m/s²

Tension in the rope = T

Sol: m2 > m1

i) for downward motion of m2:

m2 a = m2 g - T

5 a = 5 × 9.81 m/s² - T  

⇒ T = 49.05‬ m/s² - 5 a     Eqn (a)‬

ii) for upward motion of m1

m a = T - m1 g

3 a = T - 3 × 9.8 m/s²

⇒ T =  3 a + 29.43‬ m/s²   Eqn (b)

Equating Eqn (a) and(b)

49.05‬ m/s² - 5 a = T =  3 a + 29.43‬ m/s²

49.05‬ m/s² - 29.43‬ m/s² = 3 a + 5 a

19.62 m/s² = 8 a

⇒ a = 2.4525‬ m/s²

5 0
1 year ago
Other questions:
  • What is the unresolved problem that is facing scientists on the island of Guam?
    7·1 answer
  • Use the momentum equation for photons found in this week's notes, the wavelength you found in #3, and Plank’s constant (6.63E-34
    14·2 answers
  • A force is applied to a block sliding along a surface (Figure 2). The magnitude of the force is 15 N, and the horizontal compone
    8·2 answers
  • Light is propagated as a transverse wave. For this reason, sunglasses, ski goggles and camera lenses can restrict the vibration
    8·2 answers
  • What minimum heat is needed to bring 250 g of water at 20 ∘C to the boiling point and completely boil it away? The specific heat
    12·1 answer
  • There are Z protons in the nucleus of an atom, where Z is the atomic number of the element. An α particle carries a charge of +2
    13·1 answer
  • A time-dependent but otherwise uniform magnetic field of magnitude B0(t) is confined in a cylindrical region of radius 6.5 cm. I
    14·1 answer
  • An object travels 50 m in 4 s. It had no initial velocity and experiences constant acceleration. What is the magnitude of the ac
    5·1 answer
  • If F1 is the force on q due to Q1 and F2 is the force on q due to Q2, how do F1 and F2 compare? Assume that n=2.
    12·1 answer
  • Which option is part of designing a set of experimental procedures?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!