Answer:
Explanation:
The specific heat of gold is 129 J/kgC
It's melting point is 1336 K
It's Heat of fusion is 63000 J/kg
Assuming that the mixture will be solid, the thermal energy to solidify the gold has to be less than that needed to raise the solid gold to the melting point. So,
The first is E1 = 63000 J/kg x 1.5 = 94500 J
the second is E2 = 129 J/kgC x 2 kg x (1336–1000)K = 86688 J
Therefore, all solid is not correct. You will have a mixture of solid and liquid.
For more detail, the difference between E1 and E2 is 7812 J, and that will melt
7812/63000 = 0.124 kg of the solid gold
Okay, haven't done physics in years, let's see if I remember this.
So Coulomb's Law states that

so if we double the charge on

and double the distance to

we plug these into the equation to find
<span>

</span>
So we see the new force is exactly 1/2 of the old force so your answer should be

if I can remember my physics correctly.
Answer:
Two possible points
<em>x= 0.67 cm to the right of q1</em>
<em>x= 2 cm to the left of q1</em>
Explanation:
<u>Electrostatic Forces</u>
If two point charges q1 and q2 are at a distance d, there is an electrostatic force between them with magnitude

We need to place a charge q3 someplace between q1 and q2 so the net force on it is zero, thus the force from 1 to 3 (F13) equals to the force from 2 to 3 (F23). The charge q3 is assumed to be placed at a distance x to the right of q1, and (2 cm - x) to the left of q2. Let's compute both forces recalling that q1=1, q2=4q and q3=q.





Equating


Operating and simplifying

To solve for x, we must take square roots in boths sides of the equation. It's very important to recall the square root has two possible signs, because it will lead us to 2 possible answer to the problem.

Assuming the positive sign
:




Since x is positive, the charge q3 has zero net force between charges q1 and q2. Now, we set the square root as negative



The negative sign of x means q3 is located to the left of q1 (assumed in the origin).
Answer:
(D) The weight of the space station and the gravitational force of the space station on the earth.
Explanation:
In both A and B , both the forces act in the same direction ( downwards ) , so they can not be action- reaction force .
In the option C , weight of a astronaut can only be reaction force of gravitational force exerted on the earth by astronaut. Both astronaut and the earth pull each other with equal and opposite force. So option D is correct.
The answer is:
B)They are in the same group because they have similar chemical properties, but they are in different periods because they have very different atomic numbers.
The explanation:
The vertical columns on the periodic table are called groups or families because of their similar chemical behavior. All the members of a family of elements have the same number of valence electrons and similar chemical properties.
A period is a horizontal row of elements on the periodic table. For example, the elements sodium ( Na ) and magnesium ( Mg ) are both in period 3. The elements astatine ( At ) and radon ( Rn ) are both in period 6.