The acceleration of the ball when it begins to move is 200 m/s^2.
Answer:
592.92 x 10³ Pa
Explanation:
Mole of ammonia required = 10 g / 17 =0 .588 moles
We shall have to find pressure of .588 moles of ammonia at 30 degree having volume of 2.5 x 10⁻³ m³. We can calculate it as follows .
From the relation
PV = nRT
P x 2.5 x 10⁻³ = .588 x 8.32 x ( 273 + 30 )
P = 592.92 x 10³ Pa
Answer:
by applying the left hand rule you'll find that the direction is as in the photo below
The statement that can be used to answer this question is:
"If the cylinder is brought higher then, its temperature when brought down becomes higher because a greater amount of potential energy is converted to thermal energy."
The potential energy is converted to thermal energy when the object is released the velocity becomes higher because of the acceleration due to gravity.
Answer:
<h2>9.375Nm</h2>
Explanation:
The formula for calculating torque τ = Frsin∅ where;
F = applied force (in newton)
r = radius (in metres)
∅ = angle that the force made with the bar.
Given F= 25N, r = 0.75m and ∅ = 30°
torque on the bar τ = 25*0.75*sin30°
τ = 25*0.75*0.5
τ = 9.375Nm
The torque on the bar is 9.375Nm