Answer:
Yes the body will receive a dangerous shock in both cases.
Explanation:
Different parts of the body has different resistance. skin has the high resistance as compared to other organs of the body.
Dry skin has high resistance than wet skin this is because water is relatively good conductor of electricity, it adds parallel path to the current flow and hence reduces skin resistance.
Dry hands body has approximately 500 kΩ resistance and if 120 V electricity supply current received will be:
I = V/R= 120/ 500*10^3
I= 0.24 mA
Even the current seems is much lower than the safe zone but this is the case in case of DC voltage in case of AC voltage the body will receive a shock this is because the skin pass more current when the voltage is changing i.e. AC.
Similarly for wet hands body resistance is 1 kΩ. so the current through the body seems to be:
I = 120 / 1000
I = 12 mA
The current is higher than safe zone so the body will receive a dangerous shock.
The acceleration is given as:
a = g sin(30°) where g is the gravitational acceleration
For g = 10 m/s^2, we get
a = 10 sin(30°) = 10 * 1/2 = 5 m/s^2
Answer:
A ferromagnetic material is a temporary magnet. The domains in a ferromagnetic material are randomly arranged. Under certain actions, the domains align in a particular direction and the material acts as a magnet. The actions that can cause alignment of domains in a ferromagnetic material are:
- rubbing the material against a magnet would cause the alignment of domains in the same direction as of the magnet.
- passing electricity around the material would generate magnetic field which would cause domains to align along the direction of the field.
- placing the material near a strong magnet would cause the alignment of domains in the direction of the field generated by the strong magnet.
Other actions like heating the material, placing the material in a magnetic field of opposite polarity and hitting the material would lead to demagnetization of the magnetic material.
Hi!
Mechanical advantage is defined as the<em> ratio of force produced by an object to the force that is applied to it.</em>
In our case, this would be the ratio of the force applied by the claw hammer on the nail to the force Joel applies to the claw hammer, which is
160:40 or 4:1
So the mechanical advantage of the hammer is four.
Hope this helps!