As it is given that Bulk modulus and density related to velocity of sound

by rearranging the equation we can say

now we need to find the SI unit of Bulk modulus here
we can find it by plug in the units of density and speed here

so SI unit will be

SO above is the SI unit of bulk Modulus
Answer:
Part a)
f = 1911.5 Hz
Part b)

Explanation:
Here the source and observer both are moving towards each other
so we know that the apparent frequency is given as

here we know that



now we will have


Part b)
Apparent wavelength is given by the formula

here we will have


Answer:
A) greater
Explanation:
acceleration is calculated by dividing velocity over time..so by calculating, you find acceleration of A is greater than that of B
Answer:
Answered
Explanation:
v= 1 m/s
A= 1 m^2
m= 100 kg
y= 1 mm
μ = ?
ζ= viscosity of SAE 20 crankcase oil of 15° C= 0.3075 N sec/m^2
forces acting on the block are
F_s ← ↓ →F_f
mg
N= mg
F_s= shear force = ζAv/y F_f= friction force = μN
now in x- direction F_s= F_f
ζAv/y = μN
0.3075×1×1×1/1×10^{-3} = μ×100
⇒μ=0.313 (coefficient of sliding friction for the block)
Now, as the velocity is increased shear force also increases and due to this frictional force also increases.
Now, to compensate this frictional force friction coefficient must increase
as v∝μ
Answer:
the correct answer is A, the object goes 4 times as far
Explanation:
This is a projectile launching approach. Where the parameter we are controlling is the initial speed and they ask us how far it goes from the initial one. Let's calculate the range with a speed (vo)
R1 = v₀² sin 2θ / g
Now let's double vo, the new speed is
v = 2 v₀
We calculate the scope
R2 = (2v₀)² sin 2θ / g
R2 = 4 v₀² sin 2θ / g
R2 = 4 R1
Therefore the correct answer is A, the object goes 4 times further