answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
satela [25.4K]
2 years ago
8

A student sits motionless on a stool that can turn friction-free about its vertical axis (total rotational inertia I). The stude

nt is handed a spinning bicycle wheel, with rotational inertia I1, that is spinning about a vertical axis with a counterclockwise rotational velocity ω0. The student then turns the bicycle wheel over (that is, through 180∘). Determine the final rotational velocity acquired by the student. Express your answer in terms of the variables
Physics
1 answer:
vampirchik [111]2 years ago
6 0

Answer:

Explanation:

The problem can be solved with the help of conservation of angular momentum.

Initial angular momentum

= I₁ω₀

When wheel is turned by 180 degree , its angular momentum becomes

- I₁ω₀ .

So total angular momentum

=  - I₁ω₀ . + I W where W is angular velocity of student .

Applying conservation of angular momentum

=I₁ω₀= - I₁ω₀ +I W

2 I₁ω₀ = I W

W = 2 I₁ω₀  /  I

You might be interested in
As a freely falling object picks up downward speed, what happens to the power supplied by the gravitational force?
vitfil [10]

We will start from the definition of power in terms of the Force. Power could be described as the change of energy in an instant of time. Considering that Energy is the product between the Force and the distance traveled we would arrive at the expression

P = \frac{E}{t}

P = \frac{F*h}{t}

Here,

F = Force

h = Height

t = Time

As there is no external force, apart from the force of gravity, and this, is constant during the course of the object we will also have to be constant power and therefore this during its course will be the same. The correct answer is (1)

4 0
2 years ago
A charge Q is uniformly spread over one surface of a very large nonconducting square elastic sheet having sides of length d. At
GuDViN [60]

Answer:

E/4

Explanation:

The formula for electric field of a very large (essentially infinitely large) plane of charge is given by:

E = σ/(2ε₀)

Where;

E is the electric field

σ is the surface charge density

ε₀ is the electric constant.

Formula to calculate σ is;

σ = Q/A

Where;

Q is the total charge of the sheet

A is the sheet's area.

We are told the elastic sheet is a square with a side length as d, thus ;

A = d²

So;

σ = Q/d²

Putting Q/d² for σ in the electric field equation to obtain;

E = Q/(2ε₀d²)

Now, we can see that E is inversely proportional to the square of d i.e.

E ∝ 1/d²

The electric field at P has some magnitude E. We now double the side length of the sheet to 2L while keeping the same amount of charge Q distributed over the sheet.

From the relationship of E with d, the magnitude of electric field at P will now have a quarter of its original magnitude which is;

E_new = E/4

3 0
2 years ago
You are a member of an alpine rescue team and must get a box of supplies, with mass 2.20 kg , up an incline of constant slope an
a_sh-v [17]

Answer:

The minimum speed of the box bottom of the incline so that it will reach the skier is 8.19 m/s.

Explanation:

It is given that,

Mass of the box, m = 2.2 kg

The box is inclined at an angle of 30 degrees

Vertical distance, d = 3.1 m

The coefficient of friction, \mu=6\times 10^{-2}

Using the work energy theorem, the loss of kinetic energy is equal to the sum of gain in potential energy and the work done against friction.

KE=PE+W

\dfrac{1}{2}mv^2=mgh+W

W is the work done by the friction.

W=f\times d

f=\mu mg\ cos\theta

W=\mu mg\ cos\theta\times \dfrac{d}{sin\theta}

W=\dfrac{\mu mgh}{tan\theta}

\dfrac{1}{2}mv^2=mgh+\dfrac{\mu mgh}{tan\theta}

\dfrac{1}{2}v^2=gh+\dfrac{\mu gh}{tan\theta}

\dfrac{1}{2}v^2=9.8\times 3.1+\dfrac{6\times 10^{-2}\times 9.8\times 3.1}{tan(30)}

v = 8.19 m/s

So, the speed of the box is 8.19 m/s. Hence, this is the required solution.

8 0
2 years ago
Which vector has a y-component with a length of 1?
viva [34]
In this 2-dimensional graph, the x-component of each vector is the horizontal distance from the origin, while the y-component of each vector is the vertical distance from the origin. It can be seen that the c vector is 1 vertical unit away from the origin, which means that it has a y-component of 1.
4 0
2 years ago
Read 2 more answers
01 – (Valor – 2,0) O maior campo de testes de veículos da América Latina, localizado na cidade de Indaiatuba (SP), tem forma cir
Scilla [17]

Answer:

a) Calcule a frequência em RPM

= 0.6 RPM

b) a velocidade escalar do carro em m/s.

= 20m/s

Explanation:

a) Calcule a frequência em RPM

A fórmula para calcular a frequência é: 1/T

onde T= Tempo (seconds)

T = 100s

A frequência = 1/100s

A frequência = 0.01Hz

em RPM

A fórmula para calcular a frequência em RPM =

1 Hz = 60RPM

0.01Hz =

A frequência em RPM = 0.01Hz × 60

= 0.6 RPM

b) a velocidade escalar do carro em m/s.

A fórmula para calcular a velocidade escalar = diâmetro ou distância (m) ÷ tempo (s)

Diâmetro ou Distância = 2.0km

Converter 2.0km para m

1 km = 1000m

2km =

2 km × 1000m

= 2000m

A velocidade escalar = 2000m ÷ 100s

A velocidade escalar = 20m/s

Answer:

a) Frequency in RPM

= 0.6 RPM

b) Scalar Velocity

= 20m/s

Explanation:

a) Frequently in RPM

Formula : 1/T

Where T= Time (seconds)

T = 100s

= 1/100s

= 0.01Hz

Frequency in RPM =

1 Hz = 60RPM

0.01Hz = 0.01Hz × 60

= 0.6 RPM

b) Scalar velocity

The formula = Diameter or Distance ÷ Time

Diameter or Distance = 2.0km

Convert 2.0km to m

1 km = 1000m

2km =

2 km × 1000m

= 2000m

Scalar Velocity = 2000m ÷ 100s

Scalar Velocity = 20m/s

8 0
2 years ago
Other questions:
  • A race car exerts 19,454 n while the car travels at a constant speed of 201 mph, 91.36 m/s.what is the mass of the car?
    12·2 answers
  • A net force of 125 n is applied to a certain object. as a result, the object accelerates with an acceleration of 24.0 m/s2. the
    12·2 answers
  • Tony uses the device shown in the diagram to model how an electromagnet is used in his uncle’s scrap metal yard. After picking u
    14·2 answers
  • Dylan has two cubes of iron. The larger cube has twice the mass of the smaller cube. He measures the smaller cube. Its mass is 2
    15·2 answers
  • Which formula can be used to calculate the horizontal displacement not of a horizontally launched projectile
    10·1 answer
  • Temperature difference in the body. The surface temperature of the body is normally about 7.00 ∘C lower than the internal temper
    7·1 answer
  • A disk of radius R (Fig. P25.73) has a nonuniform surface charge density s 5 Cr, where C is a constant and r is measured from th
    6·1 answer
  • In 2016 there were 2025 reported collisions between trains and cars that’s resulted in 265 fatalities. Explain the change in kin
    10·1 answer
  • In a liquid with a density of 1050 kg/m3, longitudinal waves with a frequency of 450 Hz are found to have a wavelength of 7.90 m
    5·1 answer
  • A substance occupies one half of an open container. The atoms of the substance are closely packed but are still able to slide pa
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!