When the Skydiver jump out a plane, his Potential Energy is being converted or transform into Kinetic energy due to gravity. Hope this helps
Answer:
Explanation:
In case of gas , work done
W = ∫ p dV , p is pressure and dV is small change in volume
the limit of integration is from Vi to Vf .
= ∫ p dV
= ∫ p₀
dV
= p₀
/ (
)
= - 5p₀ 
Taking limit from Vi to Vf
W = - 5 p₀ (
) ltr- atm.
Answer:
Please find the answer in the explanation
Explanation:
Given that A 1.0 g plastic bead, with a charge of -6.0 nC, is suspended between the two plates by the force of the electric field between them.
Since it is suspended, it must have been repelled by the bottom negative plate and trying to be attracted to the top plate.
We can therefore conclude that the upper plate, is positively charged
B.) The charge on the positive plate of parallel-plate capacitor is constructed of two horizontal 12.0-cm-diameter circular plates must be less than 6.0 nC
Answer:
KE= 1/2mv²
Explanation:
The kinetic energy of a body is the energy possessed by virtue of the body in motion
Given the parameters
m which is the mass of the body
v which is the velocity of the body too
K.E = kinetic energy
The expression for the kinetic energy of a body is given as
KE= 1/2mv²
Answer:
Option A is correct.
when it is used in a circuit. its terminal voltage will be less than 1.5 V.
Explanation:
The terminal voltage of the battery when it is in use in circuits drops lower than the 1.5 V rating given to it due to internal resistance.
All batteries give internal resistances when used in circuits. The internal resistance (though very small) is usually modelled as connected in series with the battery. It is due to some form of interference from the chemical makeup of the battery.
Normally, while the battery is fresh, the voltage (V) obtained at its terminals when connected in series with a resistor of resistance R is V = IR; where I is the current flowing in this circuit.
But once the interenal resistance (r) of the battery comes into play,
V = I₁ (r + R)
The current in the circuit evidently drops (that is I₁ < I) and V = (I₁r + I₁R)
The voltage across the terminals of the battery is no longer V but is now (V) × [R/(R+r)] which is less than the initial V and it reduces as the internal resistance, r, increases.
Hope this Helps!!!