observer is standing at distance d = 60 m south from the intersection
cyclist is travelling at speed v = 10 m/s
now after t = 8 s its displacement from intersection is given by

so the position of cyclist makes an angle with the observer

now the component of velocity of cyclist along the line joining its position with the observer is given as

here



so at this instant cyclist is moving away with speed 8 m/s
As the external magnetic field decreases, an induced current flows in the coil. The direction of the induced magnetic field would be pointing to the screen. The flux through the coil is said to decrease. In order to counter this change, the coil would generate or produce a magnetic field that is induced that would be pointing to the same direction as the external field that is flowing which is into the the screen. This is according to Lenz's law or the right hand rule. It states that an induced current in a circuit that is due to the change or motion in magnetic field should be directed opposing to the change in the flux.
Answer:
(a) F= 6.68*10¹¹⁴ N (-k)
(b) F =( 6.68*10¹¹⁴ i + 7.27*10¹¹⁴ j ) N
Explanation
To find the magnetic force in terms of a fixed amount of charge q that moves at a constant speed v in a uniform magnetic field B we apply the following formula:
F=q* v X B Formula (1 )
q: charge (C)
v: velocity (m/s)
B: magnetic field (T)
vXB : cross product between the velocity vector and the magnetic field vector
Data
q= -1.24 * 10¹¹⁰ C
v= (4.19 * 10⁴ m/s)î + (-3.85 * 10⁴m/s)j
B =(1.40 T)i
B =(1.40 T)k
Problem development
a) vXB = (4.19 * 10⁴ m/s)î + (-3.85* 10⁴m/s)j X (1.40 T)i =
= - (-3.85*1.4) k = 5.39* 10⁴ m/s*T (k)
1T= 1 N/ C*m/s
We apply the formula (1)
F= 1.24 * 10¹¹⁰ C* 5.39* 10⁴ m/s* N/ C*m/s (-k)
F= 6.68*10¹¹⁴ N (-k)
a) vXB = (4.19 * 10⁴ m/s)î + (-3.85* 10⁴m/s)j X (1.40 T)k =
=( - 5.39* 10⁴i - 5.87* 10⁴j)m/s*T
1T= 1 N/ C*m/s
We apply the formula (1)
F= 1.24 * 10¹¹⁰ C* ( 5.39* 10⁴i + 5.87* 10⁴j) m/s* N/ C*m/s
F =( 6.68*10¹¹⁴ i + 7.27*10¹¹⁴ j ) N
KE = kinetic energy
PE = potential energy
GPE = gravitational potential energy
energy is always measured in Joules (J)
KE = (0.5) times the mass times the velocity^2
square the velocity first
Mass = (KE x 2) / v^2
square the velocity first, then double the kinetic energy, then divide
mass is measured in kg
velocity = sqrt(KE x 2 / m)
velocity can be called speed, like in the the second problem
remember to find the square root after you double the KE and divide that by the mass.
for example: if after you doubled KE and divided it by the mass you got sqrt(20), the answer would be about 4.47
GPE = mass x gravitational pull (about 9.8 m/s^2 on earth) x height
height = (PE) / (g x m)
do g x m first
So for question 1:
KE = (0.5)0.1 x 1.1^2
always square the velocity first:
KE = (0.5)0.1 x 1.21
KE = 0.0605
so if you rounded it to the nearest hundreths you would get KE = 0.06 J
don't forget the unit of energy is in Joules