answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NemiM [27]
2 years ago
11

The picture below shows the position of Earth and two stars.

Physics
2 answers:
alexgriva [62]2 years ago
8 0

The answer is:

18 years.

The explanation:

when Star 1 is 34 light years from Earth and Star 2 is 52 light years from Earth. that means the distance between star 1 and star 2 is 52-34 = 18 years so, If Star 2 explodes as a supernova so,  the explosion would take 18 years to be seen from a planet orbiting Star 1.


abruzzese [7]2 years ago
3 0
The picture below shows the position of Earth and two stars.Star 1 is 34 light years from Earth and Star 2 is 52 light years from Earth. If Star 2 explodes as a supernova, I believe that A. 18 light years would pass before the explosion is seen from a planet orbiting Star 1.
But I am not sure, sorry. :/
You might be interested in
A square loop of wire with initial side length 10 cm is placed in a magnetic field of strength 1 T. The field is parallel to the
Fofino [41]

Answer:

2 x 10⁻³ volts

Explanation:

B = magnetic of magnetic field parallel to the axis of loop = 1 T

\frac{dA}{dt} = rate of change of area of the loop = 20 cm²/s = 20 x 10⁻⁴ m²

θ = Angle of the magnetic field with the area vector = 0

E = emf induced in the loop

Induced emf is given as

E = B \frac{dA}{dt}

E = (1) (20 x 10⁻⁴ )

E = 2 x 10⁻³ volts

E = 2 mV

7 0
2 years ago
Three wires meet at a junction. Wire 1 has a current of 0.40 A into the junction. The current of wire 2 is 0.75 A out of the jun
AlexFokin [52]

Answer:

number of electrons = 2.18*10^18 e

Explanation:

In order to calculate the number of electrons that move trough the second wire, you take into account one of the Kirchoff's laws. All the current that goes inside the junction, has to go out the junction.

Then, if you assume that the current of the wire 1 and 3 go inside the junction, then, all this current have to go out trough the second junction:

i_1+i_3=i_2                 (1)

i1 = 0.40 A

i2 = 0.75 A

you solve the equation i3 from the equation (1):

i_3=i_2-i_1=0.75A-0.40A=0.35A

Next, you take into account that 1A = 1C/s = 6.24*10^18

Then, you have:

0.35A=0.35\frac{C}{s}=0.35*\frac{6.24*10^{18}e}{s}=2.18*10^{18}\frac{e}{s}

The number of electrons that trough the wire 3 is 2.18*10^18 e/s

3 0
2 years ago
Which of the following statements cannot be supported by Kepler's laws of planetary motion?
gladu [14]

Answer:

The rotational speed of the four smallest planets can be determined using the rotational speeds of the four largest planets and their orbital periods.

Explanation:

Kepler's three laws are:

1) The orbits of the planets around the Sun are ellipses, with the Sun at one of the focii

2) A line connecting the Sun with each planet sweeps out equal areas in equal time intervals

3) The cube of the semi-major axis of the orbit of one planet is proportional to the square of its orbital period

There 3 laws help explaining the following statements:

- <em>A planet's distance from the sun will not be the same in six months. --> </em>using the 1st law. In fact, since the orbit is an ellipse (and not a circle), and the Sun is at one of the focii, the distance of the planet from the Sun keeps changing during the year.

-<em> A planet's speed as it moves around the sun will not be the same in six months. -</em>-> using the 2nd law. In fact, since the line connecting the Sun to the planet must cover equal areas in the same time interval, it follows that the speed of the planet cannot be constant during the year (it will be faster when closer to the sun and slower when far from the sun).

- <em>The average distance of Saturn can be calculated using the average distance of Neptune and the orbital period of both planets. </em>--> using the 3rd law. In fact, the ratio \frac{a^3}{T^2} (where a is the semi-major axis of the orbit and T the orbital period) is constant and it is the same for every planet orbiting the sun, so by knowing the data of Neptune and the orbital period of Saturn, it is possible to calculate Saturn's average distance.

Instead, the following statement:

<em>The rotational speed of the four smallest planets can be determined using the rotational speeds of the four largest planets and their orbital periods.</em>

Is not supported by any Kepler's law.

8 0
2 years ago
One end of a string is fixed. An object attached to the other end moves on a horizontal plane with uniform circular motion of ra
sveticcg [70]

Answer:

If both the radius and frequency are doubled, then the tension is increased 8 times.

Explanation:

The radial acceleration (a_{r}), measured in meters per square second, experimented by the moving end of the string is determined by the following kinematic formula:

a_{r} = 4\pi^{2}\cdot f^{2}\cdot R (1)

Where:

f - Frequency, measured in hertz.

R - Radius of rotation, measured in meters.

From Second Newton's Law, the centripetal acceleration is due to the existence of tension (T), measured in newtons, through the string, then we derive the following model:

\Sigma F = T = m\cdot a_{r} (2)

Where m is the mass of the object, measured in kilograms.

By applying (1) in (2), we have the following formula:

T = 4\pi^{2}\cdot m\cdot f^{2}\cdot R (3)

From where we conclude that tension is directly proportional to the radius and the square of frequency. Then, if radius and frequency are doubled, then the ratio between tensions is:

\frac{T_{2}}{T_{1}} = \left(\frac{f_{2}}{f_{1}} \right)^{2}\cdot \left(\frac{R_{2}}{R_{1}} \right) (4)

\frac{T_{2}}{T_{1}} = 4\cdot 2

\frac{T_{2}}{T_{1}} = 8

If both the radius and frequency are doubled, then the tension is increased 8 times.

5 0
2 years ago
Two billiard balls move toward each other on a table. The mass of the number three ball, m1, is 5 g with a velocity of 3 m/s. Th
Stels [109]

This question deals with the law of conservation of momentum, which basically says that the total momentum in a system must stay the same, provided there are no outside forces. Since you were given the mass and velocity of the two objects you can find the momentum (p=mv) of each and then add them together to find the total momentum of the system before they collide. This total momentum must be the same after they collide.  Since you have the mass and velocity of one of the objects after the collision you can find the its momentum after.  Subtract this from the the system total and you will have the momentum of the other object after the collision.  Now that you know the momentum of the other object you can find its velocity using p=mv and its mass from before.

Be careful with the velocities.  They are vectors, so direction matters.  Typically moving to the right is positive (+) and moving to the left is negative (-).  It is not clear from your question which direction the objects are moving before and after the collision.

6 0
2 years ago
Read 2 more answers
Other questions:
  • When calculating the mechanical advantage of a lever, what two pieces of information are needed?
    8·2 answers
  • A leaky faucet drips 40 times in 30.0 s. what is the frequency of the dripping?
    13·1 answer
  • In Florida, once you have had your learner's license for _________________ without any traffic convictions, you will receive an
    11·1 answer
  • An object moving on the x axis with a constant acceleration increases its x coordinate by 82.9 m in a time of 2.51 s and has a v
    7·1 answer
  • Nitrogen (n2) gas within a piston–cylinder assembly undergoes a compression from p1 = 20 bar, v1 = 0.5 m3 to a state where v2 =
    8·2 answers
  • The strength of the gravitational field of a source mass can be measured by the magnitude of the acceleration due to gravity at
    14·1 answer
  • The end of a stopped pipe is to be cut off so that the pipe will be open. If the stopped pipe has a total length L, what fractio
    7·1 answer
  • Select the statements that are TRUE. Electrophilic aromatic substitution reactions have energies of activation that are very low
    13·1 answer
  • Romeo lanza suavemente guijarros a la ventana de julieta y quiere que los guijarros golpeen la ventana solo con con un component
    15·1 answer
  • Solenoid 2 has twice the diameter, twice the length, and twice as many turns as solenoid 1. How does the field B2 at the center
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!