answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sholpan [36]
2 years ago
7

A person with normal vision can focus on objects as close as a few centimeters from the eye up to objects infinitely far away. T

here exist, however, certain conditions under which the range of vision is not so extended. For example, a nearsighted person cannot focus on objects farther than a certain point (the far point), while a farsighted person cannot focus on objects closer than a certain point (the near point). Note that even though the presence of a near point is common to everyone, a farsighted person has a near point that is much farther from the eye than the near point of a person with normal vision.
Both nearsightedness and farsightedness can be corrected with the use of glasses or contact lenses. In this case, the eye converges the light coming from the image formed by the corrective lens rather than from the object itself.

Required:
a. If a nearsighted person has a far point df that is 3.50 m from the eye, what is the focal length f1 of the contact lenses that the person would need to see an object at infinity clearly?
b. If a farsighted person has a near point that is 0.600 m from the eye, what is the focal length f2 of the contact lenses that the person would need to be able to read a book held at 0.350 m from the person's eyes?
Physics
1 answer:
NeTakaya2 years ago
3 0

Answer:

a)   f₁ = 3.50 m ,  b)     f₂ = 0.84 m  

Explanation:

For this exercise we must use the constructor equation

          1 / f = 1 / p + 1 / q

where f is the focal length, p is the distance to the object and q is the distance to the image

a) the distance where the image should be placed is q = 3.50 m and the object is located at infinity p = ∞

           1 / f₁ = 1 /∞ + 1 / 3.50

           f₁ = 3.50 m

b) in this case the image is at q = -0.600 m and the object p = 0.350 m

           1 / f₂ = 1 / 0.350 -1 / 0.600

the negative sign, is because the image is in front of the object

           1 / f₂ = 1,1905

            f₂ = 1 / 1,1905

            f₂ = 0.84 m

You might be interested in
A rabbit is moving in the positive x-direction at 1.10 m/s when it spots a predator and accelerates to a velocity of 10.9 m/s al
anzhelika [568]

Answer:

aₓ = 0 ,       ay = -6.8125 m / s²

Explanation:

This is an exercise that we can solve with kinematics equations.

Initially the rabbit moves on the x axis with a speed of 1.10 m / s and after seeing the predator acceleration on the y axis, therefore its speed on the x axis remains constant.

x axis

          vₓ = v₀ₓ = 1.10 m / s

          aₓ = 0

y axis

initially it has no speed, so v₀_y = 0 and when I see the predator it accelerates, until it reaches the speed of 10.6 m / s in a time of t = 1.60 s. let's calculate the acceleration

         v_{y}= v_{oy} -ay t

          ay = (v_{oy} -v_{y}) / t

          ay = (0 -10.9) / 1.6

          ay = -6.8125 m / s²

the sign indicates that the acceleration goes in the negative direction of the y axis

8 0
2 years ago
A 17 g audio compact disk has a diameter of 12 cm. The disk spins under a laser that reads encoded data. The first track to be r
sladkih [1.3K]

Answer:

0.00066518 Nm

Explanation:

v = Velocity = 1.2 m/s

r = Distance to head = 2.3 cm

\omega_f = Final angular velocity

\omega_i = Initial angular velocity = 0

\alpha = Angular acceleration

t = Time taken = 2.4 s

Angular speed is given by

\omega=\dfrac{v}{r}\\\Rightarrow \omega=\dfrac{1.2}{0.023}\\\Rightarrow \omega=52.17391\ rad/s

From equation of rotational motion

\omega_f=\omega_i+\alpha t\\\Rightarrow \alpha=\frac{\omega_f-\omega_i}{t}\\\Rightarrow \alpha=\frac{52.17391-0}{2.4}\\\Rightarrow \alpha=21.73912\ rad/s^2

Torque

\tau=I\alpha\\\Rightarrow \tau=\dfrac{1}{2}mR^2\alpha\\\Rightarrow \tau=\dfrac{1}{2}0.017\times 0.06^2\times 21.73912\\\Rightarrow \tau=0.00066518\ Nm

The torque of the motor is 0.00066518 Nm

6 0
2 years ago
A rock of mass m is thrown horizontally off a building from a height h. the speed of the rock as it leaves the thrower's hand at
Stells [14]
The correct answer is <span>3) K_f =  \frac{1}{2}mv_0^2 + mgh.
</span>
In fact, the total energy of the rock when it <span>leaves the thrower's hand is the sum of the gravitational potential energy U and of the initial kinetic energy K:
</span>E=U_i+K_i=mgh +  \frac{1}{2}mv_0^2
<span>As the rock falls down, its height h from the ground decreases, eventually reaching zero just before hitting the ground. This means that U, the potential energy just before hitting the ground, is zero, and the total final energy is just kinetic energy: 
</span>E=K_f<span>
But for the law of conservation of energy, the total final energy must be equal to the tinitial energy, so E is always the same. Therefore, the final kinetic energy must be
</span>K_f = mgh +  \frac{1}{2}mv_0^2<span>
</span>

7 0
2 years ago
The initial velocity of a 4.0-kg box is 11 m/s, due west. After the box slides 4.0 m horizontally, its speed is 1.5 m/s. Determi
ankoles [38]

Answer:

F = - 59.375 N

Explanation:

GIVEN DATA:

Initial velocity = 11 m/s

final velocity = 1.5 m/s

let force be F

work done =  mass* F = 4*F

we know that

Change in kinetic energy = work done

kinetic energy = = \frac{1}{2}*m*(v_{2}^{2}-v_{1}^{2})

kinetic energy = = \frac{1}{2}*4*(1.5^{2}-11^{2}) = -237.5 kg m/s2

-237.5 = 4*F

F = - 59.375 N

7 0
2 years ago
roblem 10: In an adiabatic process oxygen gas in a container is compressed along a path that can be described by the following p
miskamm [114]

Answer:

W= -2.5 (p₁*0.0012) joules

Explanation:

Given that p₀= initial pressure, p₁=final pressure, Vi= initial volume=0 and Vf=final volume= 6/5 liters where p₁=p₀ then

In adiabatic compression, work done by mixture during compression is

W= \int\limits^f_i {p} \, dV  where f= final volume and i =initial volume, p=pressure

p can be written as p=K/V^γ where K=p₀Vi^γ =p₁Vf^γ

W= \int\limits^f_i {K/V^} \, dV

W= K/1-γ ( 1/Vf^γ-1 - 1/Vi^γ-1)

W=1/1-γ (p₁Vf-p₀Vi)

W= 1/1-1.40 (p₁*6/5 -p₀*0)  

W= -2.5 (p₁*6/5*0.001)   changing liters to m³

W= -2.5 (p₁*0.0012) joules

3 0
2 years ago
Other questions:
  • A car drives around a racetrack for 30 seconds. what do you need to know to calculate the average velocity of the car?
    9·2 answers
  • Lauren wants to know which location in her apartment is best for growing African violets. She has three African violets. She put
    13·1 answer
  • The International Space Station has a mass of 1.8 × 105 kg. A 70.0-kg astronaut inside the station pushes off one wall of the st
    11·1 answer
  • A 3-cm high object is in front of a thin lens. The object distance is 4 cm and the image distance is –8 cm. (a) What is the foca
    7·1 answer
  • The magnitude J(r) of the current density in a certain cylindrical wire is given as a function of radial distance from the cente
    15·2 answers
  • The second law of thermodynamics imposes what limit on the efficiency of a heat engine? The second law of thermodynamics imposes
    5·1 answer
  • A uniform rod of mass M and length L is free to swing back and forth by pivoting a distance x from its center. It undergoes harm
    14·1 answer
  • You are wallpapering two walls of a room. One wall measures 15 ft by 12 ft and the other measures 9 ft by 12 ft. The wall paper
    10·1 answer
  • A 10. g cube of copper at a temperature T1 is placed in an insulated cup containing 10. g of water at a temperature T2. If T1 &g
    12·1 answer
  • Three magnets are placed on a plastic stick as shown in the image. Explain how the magnets need to be rearranged so that they st
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!