Answer:
The torque on the wrench is 4.188 Nm
Explanation:
Let r = xi + yj where is the distance of the applied force to the origin.
Since x = 18 cm = 0.18 cm and y = 5.5 cm = 0.055 cm,
r = 0.18i + 0.055j
The applied force f = 88i - 23j
The torque τ = r × F
So, τ = r × F = (0.18i + 0.055j) × (88i - 23j) = 0.18i × 88i + 0.18i × -23j + 0.055j × 88i + 0.055j × -23j
= (0.18 × 88)i × i + (0.18 × -23)i × j + (0.055 × 88)j × i + (0.055 × -22)j × j
= (0.18 × 88) × 0 + (0.18 × -23) × k + (0.055 × 88) × (-k) + (0.055 × -22) × 0 since i × i = 0, j × j = 0, i × j = k and j × i = -k
= 0 - 4.14k + 0.0484(-k) + 0
= -4.14k - 0.0484k
= -4.1884k Nm
≅ -4.188k Nm
So, the torque on the wrench is 4.188 Nm
Answer
given,
Mass of Kara's car = 1300 Kg
moving with speed = 11 m/s
time taken to stop = 0.14 s
final velocity = 0 m/s
distance between Lisa ford and Kara's car = 30 m
a) change in momentum of Kara's car
Δ P = m Δ v


Δ P = - 1.43 x 10⁴ kg.m/s
b) impulse is equal to change in momentum of the car
I = - 1.43 x 10⁴ kg.m/s
c) magnitude of force experienced by Kara
I = F x t
I is impulse acting on the car
t is time
- 1.43 x 10⁴= F x 0.14
F = -1.021 x 10⁵ N
negative sign represents the direction of force
With gravitational acceleration at 9.8, initial height at 3.5m and distance at 22m the initial horizontal velocity is 26.03 ms and the flight time is .845 seconds
Answer:
The density of the sun is 4434kg/m³
This was found by dividing the mass (1.989 ×10³⁰kg) by the volume (4.486×10²⁶ m³) which was calculated using V = 4/3×pi ×r³
Explanation:
See attachment below.
Answer:
A. plot an H-R diagram for the stars in the cluster.
Explanation:
A star cluster can be defined as a constellation of stars, due to gravitational force, which has the same origin.
The astronomy student would have to plot an H-R diagram for the stars in the cluster and determine the age of the cluster by observing the turn-off point. The turn-off is majorly as a result of gradual depletion of the source of energy of the star. Thus, it projects off the constellation.