Answer:
Decreasing the distance between Hox and Blox, increasing the mass of Hox, or increasing the mass of Hox and Blox.
Explanation:
The gravity force is directly proportional to the mass of the bodies and inversely proportional to the square of the distance that separates them.
Or
If we decrease the distance between both planets (Hox and Blox), the gravitational pull between them will increase.
On the other hand, if we keep the distance between Hox and Blox, but we increase the mass of one of them, or increase the mass of both, the gravitational pull between them will also increase.
Answer: 0.98m
Explanation:
P = -74 mm Hg = 9605 Pa = 9709N/m^2
= 9605 kg m/s^2/m^2
density of water: rho = 1 g/cc = 1 (10^-3 kg)/(10^-2 m)^-3 = 1000 kg/m^3
Pressure equation: P = rho g h
h = P/(rho g)
h = (9605 kg/m/s^2) / (1000 kg/m^3) / (9.8 m/s^2)
h = 0.98 m
0.98m is the maximum depth he could have been.
Answer: a) angular acceleration, a = 5.24rad/s^2
b) time taken for the wheel to stop, ∆t = 0.30s
Explanation:
All shown in the attachment.
Answer:
The amount of charge the space shuttle collects is -1.224nC
Explanation:
The magnitude of Electric potential is given as;
V = kq/r
where;
V is the electric potential in volts
k is coulomb's constant
r is the radius of the sphere or distance moved by the charge
given; V = -1.1 V, k = 8.99 x 10⁹ Nm²/C², r = 10m
Substituting this values in the above equation, we estimate the amount of charge space shuttle collects.
q = (V*r)/k
q = (-1.1 *10)/(8.99 x 10⁹ )
q = -1.224 X 10⁻⁹ C
q = -1.224nC
Therefore, the amount of charge the space shuttle collects is -1.224nC
Efficiency. The ratio of energy which was transferred to a useful form compared to the total energy initially supplied is called the efficiency of the device. Efficiencies can be written as decimals like 0.33 or percentages 33%. To convert a efficiency expressed as a decimal to a percentage you need to multiply by 100.