Answer:
a. 30 N / m
b. 9.0 N
Explanation:
Given that
Unstretched length of the spring,
= 20.0cm = 0.2m
a) When the mass of 4.5N is hanging from the second spring, then extended length Is
= 35.0cm = 0.35m
So, the change in spring length when mass hangs is

= (0.35 - 0.20) m
= 0.15m
As spring are identical
Let us assume that the spring constant be "k", so at equilibrium
Restoring Force on spring = Block weightage
kx = W = 4.50

= 30 N / m
b) Now for the third spring, stretched the length of spring is
= 50cm = 0.5m
So, the change in spring length is

= (0.5-0.20)m
= 0.30m
At equilibrium,
Restoring Force on spring = Block weightage
Now using all mentioned and computed values in above,

= 30(0.3)
= 9.0 N
t=5s
it was correct on my do-now
so I hope it was useful for you
The velocity of Ned as measured by Pam is the interpretation of v.
Answer: Option D
<u>Explanation:</u>
According to question, we know that this is an issue depending on the logical and translation of the factors. From the measured information taken what is gathered by the two people is communicated and we have given as:
The Ned reference framework : (x, t)
The Pam reference framework : 
From the reference framework, we realize that ν is the speed of Pam (the other reference framework) as estimation by Ned.
At that point,
is the speed of Ned (from the other arrangement of the reference) as estimation by Pam.
<span>High SchoolPhysics5+3 pts</span><span>Instructions:Drag the tiles to the correct boxes to complete the pairs. Match each term with its definition. Tiles conductor radiation insulator convection conduction Pairs heat transfer involving direct contact of particles arrowBoth heat transfer in fluids arrowBoth heat transfer that doesn’t need a medium arrowBoth substance that doesn’t allow heat through arrowBoth substance that allows heat through arrowBoth
These are the answers:
</span>Conductor - <span>substance that allows heat through
</span>Radiation - <span> heat transfer that doesn’t need a medium
</span>Insulator - <span>substance that doesn’t allow heat through
</span>Convection - <span>heat transfer in fluids
Conduction - </span>heat transfer involving direct contact of particles
The answer is letter a. It is best to slow down in situations of heavy rain or flooded road as skid could be the result if you lose out of control because the driver isn't slowing down. That is why it is being said that tires can ride on a thin film of water skis as it could skid if it has lost control if the driver hadn't slowed down.