answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NemiM [27]
2 years ago
12

A simple pendulum of length 2.5 m makes 5.0 complete swings in 16 s. What is the acceleration of gravity at the location?

Physics
1 answer:
Norma-Jean [14]2 years ago
8 0
<h2>The acceleration of gravity at the location is 9.64 m/s²</h2>

Explanation:

Length of pendulum = 2.5 m

Time taken for 5 swings = 16 seconds

Time taken for 1 swing = 3.2 seconds

Period of pendulum = 3.2 seconds.

We have equation for period of simple pendulum as

             T=2\pi \sqrt{\frac{l}{g}}

Where l is the length of pendulum and g is acceleration due to gravity.

Substituting

                 T=2\pi \sqrt{\frac{l}{g}}\\\\3.2=2\pi \sqrt{\frac{2.5}{g}}\\\\g=\frac{4\pi^2 \times 2.5}{3.2^2}\\\\g=9.64m/s^2

The acceleration of gravity at the location is 9.64 m/s²

You might be interested in
A student is asked to describe the path of a paper airplane that is thrown in the classroom. Which statement best describes the
emmasim [6.3K]

Answer: The paper airplane will create a curved path towards the floor as it is pulled toward <u><em>Earth's center.</em></u>

Explanation: The paper airplane will be pulled to the center because <u><em>Earth has a much greater mass than objects on its surface.</em></u> And it will curve because of the amount of <u><em>force</em></u> you are putting onto the plane.

4 0
2 years ago
Read 3 more answers
A roller coaster car drops a maximum vertical distance of 35.4 m. Determine the maximum speed of the car at the bottom of that d
marissa [1.9K]

Answer:

The maximum speed of the car at the bottom of that drop is 26.34 m/s.

Explanation:

Given that,

The maximum vertical distance covered by the roller coaster, h = 35.4 m

We need to find the maximum speed of the car at the bottom of that drop. It is a case of conservation of energy. The energy at bottom is equal to the energy at top such that :

mgh=\dfrac{1}{2}mv^2

v=\sqrt{2gh}

v=\sqrt{2\times 9.8\times 35.4}

v = 26.34 m/s

So, the maximum speed of the car at the bottom of that drop is 26.34 m/s. Hence, this is the required solution.

8 0
2 years ago
A 248-g piece of copper is dropped into 390 mL of water at 22.6 °C. The final temperature of the water was measured as 39.9 °C.
Sedaia [141]

Answer:

335°C

Explanation:

Heat gained or lost is:

q = m C ΔT

where m is the mass, C is the specific heat capacity, and ΔT is the change in temperature.

Heat gained by the water = heat lost by the copper

mw Cw ΔTw = mc Cc ΔTc

The water and copper reach the same final temperature, so:

mw Cw (T - Tw) = mc Cc (Tc - T)

Given:

mw = 390 g

Cw = 4.186 J/g/°C

Tw = 22.6°C

mc = 248 g

Cc = 0.386 J/g/°C

T = 39.9°C

Find: Tc

(390) (4.186) (39.9 - 22.6) = (248) (0.386) (Tc - 39.9)

Tc = 335

7 0
2 years ago
A nonuniform beam 4.50 m long and weighing 1.40 kN makes an angle of 25.0° below the horizontal. It is held in position by a fri
liubo4ka [24]

Answer:

T = 7.64 kN

F_y = 0.52 kN(Downwards)

F_x = 3.23 kN (Towards Left)

Explanation:

As we know that beam is in equilibrium

So here we can use torque balance as well as force balance for the beam

Now by torque balance equation at the pivot we can say

F(4.50 cos\theta) + mg(2cos\theta) = T \times 3

As we know that

mg = 1.40 kN

F = 5 kN

so we will have

5 kN(4.50 cos25) + 1.40 kN(2 cos25) = 3 T

T = 7.64 kN

Now force balance in vertical direction

F + mg = Tsin65 + F_y

5 + 1.40 = 7.64 sin65 + F_y

F_y = 0.52 kN(Downwards)

Force balance in horizontal direction

F_x = T cos65

F_x = 7.64 cos65

F_x = 3.23 kN (Towards Left)

7 0
2 years ago
Which statement is true?
iogann1982 [59]
B 
Think of inertia of getting into a car accident without a seat belt although the car stops you will not you would likely fly out the window
7 0
2 years ago
Read 2 more answers
Other questions:
  • A frictionless pendulum clock on the surface of the earth has a period of 1.00 s. On a distant planet, the length of the pendulu
    7·1 answer
  • A child is sliding a toy block (with mass = m) down a ramp. The coefficient of static friction between the block and the ramp is
    9·2 answers
  • The air within a piston equipped with a cylinder absorbs 565 J of heat and expands from an initial volume of 0.10 L to a final v
    5·1 answer
  • You and your friends are doing physics experiments on a frozen pond that serves as a frictionless horizontal surface. Sam, with
    12·1 answer
  • A 5.00-g bullet is shot through a 1.00-kg wood block suspended on a string 2.00 m long. The center of mass of the block rises a
    7·1 answer
  • Mt. Asama, Japan, is an active volcano complex. In 2009, an eruption threw solid volcanic rocks that landed far from the crater.
    10·1 answer
  • The end of a stopped pipe is to be cut off so that the pipe will be open. If the stopped pipe has a total length L, what fractio
    7·1 answer
  • A construction worker pushes a crate horizontally on a frictionless floor with a net force of 10\, \text 10N, start text, N, end
    15·1 answer
  • A 3030 cmcm wrench is used to loosen a bolt with a force applied 0.30.3 mm from the bolt. It takes 6060 NN to loosen the bolt wh
    15·1 answer
  • evaluate the numerical value of the vertical velocity of the car at time t=0.25 s using the expression from part d, where y0=0.7
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!