answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NemiM [27]
2 years ago
12

A simple pendulum of length 2.5 m makes 5.0 complete swings in 16 s. What is the acceleration of gravity at the location?

Physics
1 answer:
Norma-Jean [14]2 years ago
8 0
<h2>The acceleration of gravity at the location is 9.64 m/s²</h2>

Explanation:

Length of pendulum = 2.5 m

Time taken for 5 swings = 16 seconds

Time taken for 1 swing = 3.2 seconds

Period of pendulum = 3.2 seconds.

We have equation for period of simple pendulum as

             T=2\pi \sqrt{\frac{l}{g}}

Where l is the length of pendulum and g is acceleration due to gravity.

Substituting

                 T=2\pi \sqrt{\frac{l}{g}}\\\\3.2=2\pi \sqrt{\frac{2.5}{g}}\\\\g=\frac{4\pi^2 \times 2.5}{3.2^2}\\\\g=9.64m/s^2

The acceleration of gravity at the location is 9.64 m/s²

You might be interested in
Consider two circular metal wire loops each carrying the same current I as shown below. In what r... Consider two circular metal
NeX [460]

Answer:

1) The magnetic field outside the loop is zero.

In region III the magnetic fields due to the two wire loops point in the opposite direction andhence cancel each other. Therefore the magnetic field is zero in region I, III and V

The diagram is attached

6 0
2 years ago
Block A, mass 250 g , sits on top of block B, mass 2.0 kg . The coefficients of static and kinetic friction between blocks A and
masha68 [24]

Answer:

  F = 69.3 N

Explanation:

For this exercise we use Newton's second law, remembering that the static friction force increases up to a maximum value given by

               fr = μ N

We define a reference system parallel to the floor

block B  ( lower)

Y axis  

            N - W₁-W₂ = 0

            N = W₂ + W₂

            N = (M + m) g

X axis

              F -fr = M a

for block A (upper)

X axis

              fr = m a                 (2)

so that the blocks do not slide, the acceleration in both must be the same.

Let's solve the system by adding the two equations

             F = (M + m) a          (3)

             a =\frac{F}{ M+m}

the friction force has the formula

            fr = μ N

             fr = μ (M + m) g

let's calculate

            fr = 0.34 (2.0 + 0.250) 9.8

            fr = 7.7 N

we substitute in equation 2

             fr = m a

             a = fr / m

             a = 7.7 / 0.250

             a = 30.8 m / s²

we substitute in equation 3

             F = (2.0 + 0.250) 30.8

             F = 69.3 N

5 0
2 years ago
Dane is standing on the moon holding an 8 kilogram brick 2 metres above the ground. How much energy is in the brick's gravitatio
Nadya [2.5K]

The gravitational potential energy of the brick is 25.6 J

Explanation:

The gravitational potential energy of an object is the energy possessed by the object due to its position in a gravitational field.

Near the surface of a planet, the gravitational potential energy is given by

PE=mgh

where

m is the mass of the object

g is the strength of the gravitational field

h is the height of the object relative to the ground

For the brick in this problem, we have:

m = 8 kg is its mass

g = 1.6 N/kg is the strenght of the gravitational field on the moon

h = 2 m is the height above the ground

Substituting, we find:

PE=(8)(1.6)(2)=25.6 J

Learn more about potential energy:

brainly.com/question/1198647

brainly.com/question/10770261

#LearnwithBrainly

3 0
2 years ago
Read 2 more answers
At time t, gives the position of a 3.0 kg particle relative to the origin of an xy coordinate system ( ModifyingAbove r With rig
Elena-2011 [213]

Complete Question

  The complete Question is shown on the first uploaded image

Answer:

a

The torque acting on the particle is  \tau = 48t \r k

b

The magnitude of the angular momentum increases relative to the origin

Explanation:

From the equation we are told that

      The position of the particle is   \= r = 4.0 t^2 \r i - (2.0 t - 6.0 t^2 ) \r j

       The mass of the particle is m = 3.0 kg

        The time is  t

   

The torque acting on  the particle is mathematically represented as

           \tau = \frac{ d \r l }{dt}

where \r l is change in angular momentum which is mathematically represented as

       \r l = m (\r r \ \ X  \ \ \r v)

Where X mean cross- product

   \r v is the velocity which is mathematically represented as

           \r v = \frac{d \r r }{dt}

Substituting for  \r r

           \r v = \frac{d }{dt} [ 4 t^2 \r i - (2t + 6t^2 ) \r j]

           \r v =  8t \r i - (2 + 12 t) \r j

Now the cross product of \r r \ and \ \r v is  mathematically evaluated as    

          \r r  \  \ X \ \ \r v = \left[\begin{array}{ccc}{\r i}&{\r j}&{\r k}\\{4t^2}&{-2t -6t^2}&0\\{8t}&{-2 -12t}&0\end{array}\right]

                       = 0 \r i + 0 \r j + (- 8t^2 -48t^3 + 16t^2 + 48t^3 ) \r k

                      \r r \ \  X \ \ \r v = 8t^2 \r k

So the angular momentum becomes

       \r l = m (8t^2 \r k)

Substituting for m

      \r l = 3 *  (8t^2 \r k)

      \r l =24t^2  \r k

Substituting into equation for torque

       \tau = \frac{d}{dt} [24t^2 \r k]

       \tau = 48t \r k

The magnitude of the angular momentum can be evaluated mathematically as

        |\r l| = \sqrt{(24 t^2) ^2}

        |\r l| = 24 t^2

From the is equation we see that the magnitude of the angular momentum is varies directly with square of the time so it would relative to the origin because at the origin t= 0s and we move out from origin t increases hence angular momentum increases also

4 0
2 years ago
You lower the temperature of a sample of liquid carbon disulfide from 90.3 ∘ C until its volume contracts by 0.507 % of its init
Lady_Fox [76]

Answer:

T_{f} = 85.89 ° C

Explanation:

The linear thermal expansion process is given by

      ΔL = L α ΔT

For the three-dimensional case, the expression takes the form

     ΔV = V β ΔT

Let's apply this equation to our case

     ΔV / V = ​​-0.507% = -0.507 10-2

     ΔT = (ΔV / V)  1 /β

     ΔT = -0.507 10⁻²  1 / 1.15 10⁻³

     ΔT = -4.409

     T_{f} –T₀ = 4,409

     T_{f} = T₀ - 4,409

     T_{f} = 90.3-4409

     T_{f} = 85.89 ° C

6 0
2 years ago
Read 2 more answers
Other questions:
  • The sensory portion of the pns carries electrical signals ________ the cns; the motor portion carries electrical signals _______
    6·1 answer
  • A ladder is leaning against a vertical wall, and both ends of the ladder are at the point of slipping. The coefficient of fricti
    10·1 answer
  • When a submarine dives to a depth of 5.0 × 102 m, how much pressure, in pa, must its hull be able to withstand? how many times l
    12·2 answers
  • A block weighing 15 newtons is pulled to the top of an incline that is 0.20 meter above the ground, as shown below. if 4.0 joule
    14·1 answer
  • The Moon and Earth rotate about their common center of mass, which is located about RcM 4700 km from the center of Earth. (This
    7·1 answer
  • A 1000-kg car is driving toward the north along a straight horizontal road at a speed of 20.0 m/s. The driver applies the brakes
    5·1 answer
  • A 25-kg iron block initially at 350oC is quenched in an insulated tank that contains 100 kg of water at 18oC. Assuming the water
    13·1 answer
  • A 25.0 kg bag of peat moss sits in the back of a flatbed truck, driving up a hill. The bag experiences a 225N normal force. The
    14·1 answer
  • a block weighing (Fg) 50 N is resting on a steel table (us = 0.74). The minimum force to start this block moving is what N
    8·1 answer
  • The diagram shows a heater above a thermometer. The thermometer bulb is in the position shown. Which row shows how the heat ener
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!