answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pickupchik [31]
2 years ago
9

tas watches as his uncle changes a flat tire on a car. his uncle raises the car using a machine called a jack. each time his unc

le pushes down on the jack handle, the car rises up. tas sketches the jack and labels it using the symbols f, to represent force, and d, to represent distance. he uses large and small letters to compare the sizes of the forces and distances. which set of labels is correct for the side of the jack that tas’s uncle pushes on? a large f and a small d a small f and a small d a large f and a large d a small f and a large d
Physics
2 answers:
Alenkinab [10]2 years ago
8 0
Small f and large L.

People needs help of machines to increase their force.

People cannot lift a car without a machine.

Using the leverage  or hydraulic principles the machines increase your force.

If you use a large leverage you execute a large movement with little force and as result the ohter side will move small distances with a greater force.

I hope this help. Please, let me know.
kakasveta [241]2 years ago
7 0

The answer is

-Small f and large D.

The explanation:

-when The car jack is an example of a machine, which is defined as anything that a person can use to make the exertion of force easier.

-So with the small force he exerts on the jack, the distance that the car is lifted up increases .

and People needs help of machines to increase their force.  People cannot lift a car without a machine. Using the leverage  or hydraulic principles the machines increase your force.

If you use a large leverage you execute a large movement with little force and as result the other side will move small distances with a greater force.

You might be interested in
1. Determina el momento que produce una fuerza de 7 N tangente a una rueda de un metro de diámetro, sabiendo que el punto de apl
Rudik [331]

Answer:

τ= F r     into the blade

Explanation:

The moment of a force is defined by

         τ = F x r

where the bold indicates vectors

Let us write in the expression in magnitude

         τ = F r sin θ

in our case the force is tangent to the wheel therefore the angle between F and the radius is 90º, and the sin 90 = 1

       τ= F r

The direction of τ can be used by the rule of the right hand, the fingers curve in the direction of the torque when advancing from the force to the radius and the thumb points in the direction of the torque.

In this case, for a clockwise rotation, the fingers are curved in the direction and the thumb points into the blade, this is the direction of the τ.

TRASLATE

El momento de una fura es definido por

         τ = F x r

donde la negrillas indican vectores

Escribamos en ta expresión en magnitud

          τ = F r sin θ

en nuestro caso la fuerza es tangente a la rueda por lo tanto el angulo entre F y el radios es 90º, y el sin 90=1

        τ = F r

la dirección de tau la podemos  usar la regla de la mano derecha, los dedos curva en la dirección del torque al avanzar dese la fuerza al radio y el pulgar apunta en la dirección del torque.

En este caso para un giro en sentido horario los dedos se curvan ente sentido y el pulgar apunta hacia dentro de lla hoja, esta es la dirección del troque

5 0
2 years ago
If the frequencies of two component waves are 24 Hz and 20 Hz, they should produce _______ beats per second.
horrorfan [7]
This can be answered using the beat frequency formula, which is simply the difference between 2 frequencies.

Let: <span>fᵇ = beat frequency
</span>f₁ = first frequency
f₂ = second frequency

fᵇ = |f₁ - f₂|

substituting the values:
fᵇ = |24Hz - 20Hz|
fᵇ = 4Hz

The unit Hz also means beats per second, therefore:
<span>fᵇ = 4 beats per second
</span>
Therefore, the answer is C. 4
8 0
2 years ago
Read 2 more answers
Two fun-loving otters are sliding toward each other on a muddy (and hence frictionless) horizontal surface. One of them, of mass
zvonat [6]

Answer:

(a). The magnitude and direction of the velocity of the otters after collision is 1.35 m/s toward left.

(b). The mechanical energy dissipates during this play is 226.98 J.

Explanation:

Given that,

Mass of one otter = 8.50 kg

Speed = 6.00 m/s

Mass of other = 5.75 kg

Speed = 5.50 m/s

(a). We need to calculate the magnitude and direction of the velocity of these free-spirited otters right after they collide

Using conservation of momentum

m_{1}v_{1}+m_{2}v_{2}=(m_{1}+m_{2})v

Put the value into the formula

8.50\times(-6.00)+5.75\times5.50=(8.50+5.75)\times v

v=\dfrac{-19.375}{14.25}

v=-1.35\ m/s

Negative sign shows the direction of motion of the object after collision is toward left.

(b). We need to calculate the initial kinetic energy

Using formula of kinetic energy

K.E_{i}=\dfrac{1}{2}m_{1}v_{1}^2+\dfrac{1}{2}m_{2}v_{2}^2

Put the value into the formula

K.E_{i}=\dfrac{1}{2}\times8.50\times(6.00)^2+\dfrac{1}{2}\times5.75\times(5.50)^2

K.E_{i}=239.96\ J

We need to calculate the final kinetic energy

Using formula of kinetic energy

K.E_{f}=\dfrac{1}{2}(m_{1}+m_{2})v^2

Put the value into the formula

K.E_{f}=\dfrac{1}{2}\times(8.50+5.75)\times(-1.35)^2

K.E_{f}=12.98\ J

We need to calculate the mechanical energy dissipates during this play

Using formula of loss of mechanical energy

\Delta K.E=K.E_{f}-K.E_{i}

Put the value into the formula

\Delta K.E=12.98-239.96

\Delta K.E=-226.98\ J

Negative sign shows the loss of mechanical energy

Hence, (a). The magnitude and direction of the velocity of the otters after collision is 1.35 m/s toward left.

(b). The mechanical energy dissipates during this play is 226.98 J.

8 0
2 years ago
Read 2 more answers
An 80.0-kg object is falling and experiences a drag force due to air resistance. The magnitude of this drag force depends on its
FromTheMoon [43]

Answer:

The terminal speed of this object is 12.6 m/s

Explanation:

It is given that,

Mass of the object, m = 80 kg

The magnitude of drag force is,

F_{drag}=12v+4v^2

The terminal speed of an object is attained when the gravitational force is balanced by the gravitational force.

F_{drag}=mg

12v+4v^2=80\times 9.8

4v^2+12v=784

On solving the above quadratic equation, we get two values of v as :

v = 12.58 m/s

v = -15.58 m/s (not possible)

So, the terminal speed of this object is 12.6 m/s. Hence, this is the required solution.

6 0
2 years ago
WILL GIVE BRAINLIEST AND 100 POINTS! NEED THIS ASAP!
lorasvet [3.4K]

Answer:

6.57, 1.64, .88

Explanation:

all correct on edge

8 0
2 years ago
Other questions:
  • Examine the circuit. Pretend you are an electron flowing through this circuit and you are with a group of other electrons. Sudde
    14·2 answers
  • A 0.12 kg bird is flying at a constant speed of 7.8 m/s. what is the birds conetic energy?
    13·2 answers
  • A 92-kg rugby player running at 7.5 m/s collides in midair with a 112-kg player moving in the opposite direction. After the coll
    7·1 answer
  • A car starting from rest (i.e. initial velocity = 0.0 m/s), moves in the positive X-direction with a constant average accelerati
    14·1 answer
  • Honeybees acquire a charge while flying due to friction with the air. A 100 mg bee with a charge of +23 pC experiences an electr
    7·1 answer
  • A simple harmonic wave of wavelength 18.7 cm and amplitude 2.34 cm is propagating along a string in the negative x-direction at
    7·1 answer
  • Water exits a garden hose at a speed of 1.2 m/s. If the end of the garden hose is 1.5 cm in diameter and you want to make the wa
    9·1 answer
  • A moving sidewalk has a velocity of 1.7m/s north. if a man walks 1.1m/s, how long does it take him to travel 15m north in relati
    8·1 answer
  • Two thermometers are calibrated, one in degrees Celsius and the other in degrees Fahrenheit.
    14·1 answer
  • In an experiment, a torque of a known magnitude is exerted along the edge of a rotating disk. The disk rotates about its center.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!