<span>When the particles of a medium move with simple harmonic motion, this means the wave is a sinusoidal wave.
Know that a sinusoidal curve can describe either sine or cosine functions (remember your cofunction identities for sine and cosine).</span>
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions here.
The moment of the resultant of these two forces with respect to O 376 lb-ft CCW which is <span>about moment center point O.</span>
Answer:
Since the spring mass system will execute simple harmonic motion the position as a function of time can be written as
'A' is the amplitude = 6 inches (given)
is the natural frequency of the system
At equilibrium we have

Applying values we get

thus natural frequency equals

Thus the equation of motion becomes

At time t=0 since mass is at it's maximum position thus we have

Thus the position of mass at the given times is as follows
1) at

2) at

3) at

4) at

5) at

Answer:
The angle between the red and blue light is 1.7°.
Explanation:
Given that,
Wavelength of red = 656 nm
Wavelength of blue = 486 nm
Angle = 37°
Suppose we need to find the angle between the red and blue light as it leaves the prism


We need to calculate the angle for red wavelength
Using Snell's law,

Put the value into the formula



We need to calculate the angle for blue wavelength
Using Snell's law,

Put the value into the formula



We need to calculate the angle between the red and blue light
Using formula of angle

Put the value into the formula


Hence, The angle between the red and blue light is 1.7°.