Explanation:
It is given that,
Mass of the car 1, 
Initial speed of car 1,
(east)
Mass of the car 2, 
Initial speed of car 2,
(north)
(b) As the cars stick together. It is a case of inelastic collision. Let V is the common speed after the collision. Using the conservation of momentum as :




The magnitude of speed,

V = 12.22 m/s
(b) Let
is the direction the wreckage move just after the collision. It is given by :



Hence, this is the required solution.
Answer:
There will be no change in the direction of the electric field .
Explanation:
The direction will remain the same because the sign of the charges has no effect on it.
When one replaces the conducting cube with one that has positive charge carriers there will be no change in the direction of the field as there is no defined relationship between the direction of the electric field and sign of the charge.
Answer:
b) Document lessons learned.
Explanation:
First he should do documentation
then C
then D
then A
One of the fundamental pillars to solve this problem is the use of thermodynamic tables to be able to find the values of the specific volume of saturated liquid and evaporation. We will be guided by the table B.7.1 'Saturated Methane' from which we will obtain the properties of this gas at the given temperature. Later considering the isobaric process we will calculate with that volume the properties in state two. Finally we will calculate the times through the differences of the temperatures and reasons of change of heat.
Table B.7.1: Saturated Methane




Calculate the specific volume of the methane at state 1



Assume the tank is rigid, specific volume remains constant


Now from the same table we can obtain the properties,
At 


We can calculate the time taken for the methane to become a single phase

Here
Initial temperature of Methane
Warming rate
Replacing



Therefore the time taken for the methane to become a single phase is 5hr