Metallic elements can exist on their own as individual atoms.
Nonmetals usually exist as molecules, combining with atoms of themselves.
Nonmetals can exist on their own as individual atoms.
Explanation:
Metallic elements can exist on their own as individual atoms without combining with another atom. They are stable that way. For example gold, copper, and silver.
Non-metals are usually found as molecules in combined states. The molecules are bounded to each other through covalent bonds. Examples are oxygen gas, nitrogen gas e.t.c. When the two atoms combine, they share their electrons to for homonuclear molecules.
Non-metals like the noble gases exists on their own as individual atoms. They are mono-atomic gases and are stable in nature.
learn more:
Metals and non - metals brainly.com/question/2758034
#learnwithBrainly
Answer:
a. Her moment of inertia increases and she rotates slower.
Explanation:
As we know that initially when she starts her motion she is in piked position due to which her whole mass is concentrated near the axis of rotation
So here the rotational Inertia of her body will be smaller
Now when is comes closer to the position of landing she extends into layout position due to which her mass will move away from the axis of rotation
Due to this the rotational inertia of her body will increase
now we know that there is no external torque on the system
so here angular momentum must be conserved
So we will have

so if rotational inertia is increasing then angular speed must be slower
so correct answer will be
a. Her moment of inertia increases and she rotates slower.
A. The horizontal velocity is
vx = dx/dt = π - 4πsin (4πt + π/2)
vx = π - 4π sin (0 + π/2)
vx = π - 4π (1)
vx = -3π
b. vy = 4π cos (4πt + π/2)
vy = 0
c. m = sin(4πt + π/2) / [<span>πt + cos(4πt + π/2)]
d. m = </span>sin(4π/6 + π/2) / [π/6 + cos(4π/6 + π/2)]
e. t = -1.0
f. t = -0.35
g. Solve for t
vx = π - 4πsin (4πt + π/2) = 0
Then substitute back to solve for vxmax
h. Solve for t
vy = 4π cos (4πt + π/2) = 0
The substitute back to solve for vymax
i. s(t) = [<span>x(t)^2 + y</span>(t)^2]^(1/2)
h. s'(t) = d [x(t)^2 + y(t)^2]^(1/2) / dt
k and l. Solve for the values of t
d [x(t)^2 + y(t)^2]^(1/2) / dt = 0
And substitute to determine the maximum and minimum speeds.
Explanation:
Below is an attachment containing the solution.
Answer:
Decreased by a factor of 4.5
Explanation:
"We have Newton formula for attraction force between 2 objects with mass and a distance between them:

where
is the gravitational constant on Earth.
are the masses of the object and Earth itself. and R distance between, or the Earth radius.
So when R is tripled and mass is doubled, we have the following ratio of the new gravity over the old ones:




Since
and 

So gravity would have been decreased by a factor of 4.5