answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ann [662]
1 year ago
14

Quinn is testing the motion of two projectiles x and y by shooting them from a sling shot. What can we say best describes the mo

tion of the projectiles ? Assume air resistance is not a factor
Physics
2 answers:
Semmy [17]1 year ago
6 0

B. The vertical velocity of projectile Y is changing, and the horizontal velocity of projectile X is constant.

Studentka2010 [4]1 year ago
3 0

Explanation:

            A projectile motion may be defined as that form of a motion that is experienced by an object or a particle which is projected near the surface of the Earth and the particle moves along the curved path  subjected to gravity force only.

           Thus a projectile motion is always acted upon by a constant acceleration due to gravity in the down ward direction.

             In the context, Quinn shoots two particle x and y from his sling shot and he observes that both his projectiles travels in a parabola curve in the air. Both the object x and y touches the ground a distance apart from him which is known as the range and it depends upon the velocity of the projectile. Both the projectile reaches a maximum height and then drop on the ground in a parabola shape.

You might be interested in
An aluminum "12 gauge" wire has a diameter d of 0.205 centimeters. The resistivity ρ of aluminum is 2.75×10−8 ohm-meters. The el
Tresset [83]

Complete Question

An aluminum "12 gauge" wire has a diameter d of 0.205 centimeters. The resistivity ρ of aluminum is 2.75×10−8 ohm-meters. The electric field in the wire changes with time as E(t)=0.0004t2−0.0001t+0.0004 newtons per coulomb, where time is measured in seconds.

I = 1.2 A at time 5 secs.

Find the charge Q passing through a cross-section of the conductor between time 0 seconds and time 5 seconds.

Answer:

The charge is  Q =2.094 C

Explanation:

From the question we are told that

    The diameter of the wire is  d =  0.205cm = 0.00205 \ m

     The radius of  the wire is  r =  \frac{0.00205}{2} = 0.001025  \ m

     The resistivity of aluminum is 2.75*10^{-8} \ ohm-meters.

       The electric field change is mathematically defied as

         E (t) =  0.0004t^2 - 0.0001 +0.0004

     

Generally the charge is  mathematically represented as

       Q = \int\limits^{t}_{0} {\frac{A}{\rho} E(t) } \, dt

Where A is the area which is mathematically represented as

       A =  \pi r^2 =  (3.142 * (0.001025^2)) = 3.30*10^{-6} \ m^2

 So

       \frac{A}{\rho} =  \frac{3.3 *10^{-6}}{2.75 *10^{-8}} =  120.03 \ m / \Omega

Therefore

      Q = 120 \int\limits^{t}_{0} { E(t) } \, dt

substituting values

      Q = 120 \int\limits^{t}_{0} { [ 0.0004t^2 - 0.0001t +0.0004] } \, dt

     Q = 120 [ \frac{0.0004t^3 }{3} - \frac{0.0001 t^2}{2} +0.0004t] }  \left | t} \atop {0}} \right.

From the question we are told that t =  5 sec

           Q = 120 [ \frac{0.0004t^3 }{3} - \frac{0.0001 t^2}{2} +0.0004t] }  \left | 5} \atop {0}} \right.

          Q = 120 [ \frac{0.0004(5)^3 }{3} - \frac{0.0001 (5)^2}{2} +0.0004(5)] }

         Q =2.094 C

     

5 0
2 years ago
4. A trolley of mass 2kg rests next to a trolley of mass 3 kg on a flat
nydimaria [60]

Answer:

a. The total momentum of the trolleys which are at rest before the separation is zero

b. The total momentum of the trolleys after separation is zero

c. The momentum of the 2 kg trolley after separation is 12 kg·m/s

d. The momentum of the 3 kg trolley is -12 kg·m/s

e. The velocity of the 3 kg trolley = -4 m/s

Explanation:

a. The total momentum of the trolleys which are at rest before the separation is zero

b. By the principle of the conservation of linear momentum, the total momentum of the trolleys after separation = The total momentum of the trolleys before separation = 0

c. The momentum of the 2 kg trolley after separation = Mass × Velocity = 2 kg × 6 m/s = 12 kg·m/s

d. Given that the total momentum of the trolleys after separation is zero, the momentum of the 3 kg trolley is equal and opposite to the momentum of the 2 kg trolley = -12 kg·m/s

e. The momentum of the 3 kg trolley = Mass of the 3 kg Trolley × Velocity of the 3 kg trolley

∴ The momentum of the 3 kg trolley = 3 kg × Velocity of the 3 kg trolley = -12 kg·m/s

The velocity of the 3 kg trolley = -12 kg·m/s/(3 kg) = -4 m/s

3 0
1 year ago
Consider the waveform expression. y (x, t) = ym sin (0.333x + 5.36 + 585t) The transverse displacement (y) of a wave is given as
Sonja [21]

Explanation:

The waveform expression is given by :

y(x,t)=y_m\ sin(0.333x+5.36+585t)...........(1)

Where

y is the position

t is the time in seconds

The general waveform equation is given by :

y(x,t)=y_m\ sin(kx+\phi+\omega t)..........(2)

Where

k=\dfrac{2\pi}{\lambda}

\omega=2\pi f

On comparing equation (1) and (2) we get :

0.333=\dfrac{2\pi}{\lambda}

\lambda=18.86\ m

585=2\pi f

f = 93.10 Hz

Time period, T=\dfrac{1}{f}

T=\dfrac{1}{0.010}

T = 0.010 s

Phase constant, \phi=5.36\ radian

Hence, this is the required solution.

8 0
2 years ago
How much energy does a 50 kg rock have if it is sitting on the edge of a 15 m cliff?
noname [10]

Answer:

7350 J

Explanation:

The gravitational potential energy of the rock sitting on the edge of the cliff is given by:

U=mgh

where

m is the mass of the rock

g is the gravitational acceleration

h is the height of the cliff

In this problem, we have

m = 50 kg

g = 9.8 m/s^2

h = 15 m

Substituting numbers into the formula, we find:

U=(50 kg)(9.8 m/s^2)(15 m)=7350 J

3 0
2 years ago
Sally finds herself stranded on a frozen pond so slippery that she can't stand up or walk on it. To save herself, she throws one
8_murik_8 [283]

Answer:

a) 2.5 m/s. (In the opposite direction to the direction in which she threw the boot).

b) The centre of mass is still at the starting point for both bodies.

c) It'll take Sally 12 s to reach the shore which is 30 m from her starting point.

Explanation:

Linear momentum is conserved.

(mass of boot) × (velocity of boot) + (mass of sally) × (velocity of Sally) = 0

5×30 + 60 × v = 0

v = (-150/60) = -2.5 m/s. (Minus inicates that motion is in the opposite direction to the direction in which she threw the boot).

b) At time t = 10 s,

Sally has travelled 25 m and the boot has travelled 300 m.

Taking the starting point for both bodies as the origin, and Sally's direction as the positive direction.

Centre of mass = [(60)(25) + (5)(-300)]/(60+5)

= 0 m.

The centre of mass is still at the starting point for both bodies.

c) The shore is 30 m away.

Speed = (Distance)/(time)

Time = (Distance)/(speed) = (30/2.5)

Time = 12 s

Hope this Helps!!!

7 0
2 years ago
Read 2 more answers
Other questions:
  • When a warm air mass catches up with a cold air mass, forming a warm front, the warm air slides over the top of the cold air, be
    12·1 answer
  • As a moon follows its orbit around a planet, the maximum grav- itational force exerted on the moon by the planet exceeds the min
    9·1 answer
  • You are driving to the grocery store at 20 m/s. You are 110m from an intersection when the traffic light turns red. Assume that
    14·1 answer
  • Water, of density 1000 kg/m3, is flowing in a drainage channel of rectangular cross-section. The width of the channel is 15 m, t
    11·1 answer
  • A solid metal sphere of diameter D is spinning in a gravity-free region of space with an angular velocity of ω. The sphere is sl
    7·1 answer
  • Determine the centripetal force upon a 40-kg child who makes 10 revolution around the cliffhanger in 29.3 seconds.the radius of
    6·1 answer
  • A punted football is observed to have velocity components vhorizontal = 15 m/s to the right and vvertical = 1.25 m/s directed do
    6·1 answer
  • Calculate the energy in the form of heat (in kJ) required to change 75.0 g of liquid water at 27.0 °C to ice at –20.0 °C. Assume
    15·1 answer
  • Bernice draws an oxygen atom. She draws a small circle for the nucleus. Inside of the circle, she draws plus signs for protons a
    14·1 answer
  • "For a first order instrument with a sensitivity of .4 mV/K and a time" constant of 25 ms, find the instrument’s response as a f
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!