answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elden [556K]
2 years ago
11

A mover hoists a 50 kg box from the ground to a height of 2 m. What was the change in the box's energy

Physics
1 answer:
SSSSS [86.1K]2 years ago
3 0

Answer:

980 J

Explanation:

The change in box's energy is equal to its change in gravitational potential energy:

\Delta U = m g \Delta h

where

m = 50 kg is the mass of the box

g = 9.8 m/s^2 is the acceleration due to gravity

\Delta h= 2m is the change in height of the box

Substituting numbers, we find

\Delta U = (50 kg)(9.8 m/s^2)(2 m)=980 J

You might be interested in
answers Collision derivation problem. If the car has a mass of 0.2 kg, the ratio of height to width of the ramp is 12/75, the in
Natasha2012 [34]

Answer:

4.8967m

Explanation:

Given the following data;

M = 0.2kg

∆p = 0.58kgm/s

S(i) = 2.25m

Ratio h/w = 12/75

Firstly, we use conservation of momentum to find the velocity

Therefore, ∆p = MV

0.58kgm/s = 0.2V

V = 0.58/2

V = 2.9m/s

Then, we can use the conservation of energy to solve for maximum height the car can go

E(i) = E(f)

1/2mV² = mgh

Mass cancels out

1/2V² = gh

h = 1/2V²/g = V²/2g

h = (2.9)²/2(9.8)

h = 8.41/19.6 = 0.429m

Since we have gotten the heigh, the next thing is to solve for actual slant of the ramp and initial displacement using similar triangles.

h/w = 0.429/x

X = 0.429×75/12

X = 2.6815

Therefore, by Pythagoreans rule

S(ramp) = √2.68125²+0.429²

S(ramp) = 2.64671

Finally, S(t) = S(ramp) + S(i)

= 2.64671+2.25

= 4.8967m

3 0
2 years ago
A 2-kg cart, traveling on a horizontal air track with a speed of 3 m/s, collides with a stationary 4-kg cart. The carts stick to
daser333 [38]

Answer:

Magnitude of impulse, |J| = 4 kg-m/s                                                                                

Explanation:

It is given that,

Mass of cart 1, m_1=2\ kg

Mass of cart 2, m_2=4\ kg  

Initial speed of cart 1, u_1=3\ m/s          

Initial speed of cart 2, u_2=0 (stationary)

The carts stick together. It is the case of inelastic collision. Let V is the combined speed of both carts. The momentum remains conserved.

m_1u_1+m_2u_2=(m_1+m_2)V

V=\dfrac{m_1u_1+m_2u_2}{(m_1+m_2)}        

V=\dfrac{2\times 3}{(2+4)}

V = 1 m/s

The magnitude of the impulse exerted by one cart on the other is given by:

J=F\times t=m(V-u)

J=m(V-u)

J=2\times (1-3)    

J = -4 kg-m/s

or

|J| = 4 kg-m/s

So, the magnitude of the impulse exerted by one cart on the other 4 kg-m/s. Hence, this is required solution.

8 0
2 years ago
A violin with string length 32 cm and string density 1.5 g/cm resonates in its fundamental with the first overtone of a 2.0-m or
love history [14]

Answer:

T=1022.42 N

Explanation:

Given that

l = 32 cm ,μ = 1.5 g/cm

L =2 m  ,V= 344 m/s

The pipe is closed so n= 3 ,for first over tone

f=\dfrac{nV}{4L}

f=\dfrac{3\times 344}{4\times 2}

f= 129 Hz

The tension in the string given as

T = f²(4l²) μ

Now by putting the values

T = f²(4l²) μ

T = 129² x (4 x 0.32²)  x 1.5 x  10⁻³ x 100

T=1022.42 N

6 0
2 years ago
In certain cases, using both the momentum principle and energy principle to analyze a system is useful, as they each can reveal
SpyIntel [72]

Answer:

A) F_g = 26284.48 N

B) v = 7404.18 m/s

C) E = 19.19 × 10^(10) J

Explanation:

We are given;

Mass of satellite; m = 3500 kg

Mass of the earth; M = 6 x 10²⁴ Kg

Earth circular orbit radius; R = 7.3 x 10⁶ m

A) Formula for the gravitational force is;

F_g = GmM/r²

Where G is gravitational constant = 6.67 × 10^(-11) N.m²/kg²

Plugging in the relevant values, we have;

F_g = (6.67 × 10^(-11) × 3500 × 6 x 10²⁴)/(7.3 x 10⁶)²

F_g = 26284.48 N

B) From the momentum principle, we have that the gravitational force is equal to the centripetal force.

Thus;

GmM/r² = mv²/r

Making v th subject, we have;

v = √(GM/r)

Plugging in the relevant values;

v = √(6.67 × 10^(-11) × 6 x 10²⁴)/(7.3 x 10⁶))

v = 7404.18 m/s

C) From the energy principle, the minimum amount of work is given by;

E = (GmM/r) - ½mv²

Plugging in the relevant values;

E = [(6.67 × 10^(-11) × 3500 × 6 × 10²⁴)/(7.3 x 10⁶)] - (½ × 3500 × 7404.18)

E = 19.19 × 10^(10) J

5 0
2 years ago
Springfield's "classic rock" radio station broadcasts at a frequency of 102.1 mhz. what is the length of the radio wave in meter
Mila [183]
The frequency of the radio wave is:
f=102.1 MHz = 102.1 \cdot 10^6 Hz

The wavelength of an electromagnetic wave is related to its frequency by the relationship
\lambda= \frac{c}{f}
where c is the speed of light and f the frequency. Plugging numbers into the equation, we find
\lambda= \frac{3 \cdot 10^8 m/s}{102.1 \cdot 10^6 Hz}= 2.94 m
and this is the wavelength of the radio waves in the problem.
7 0
2 years ago
Other questions:
  • You hold a piece of wood in one hand and a piece of iron in the other. both pieces have the same volume, and you hold them fully
    11·1 answer
  • Lydia is often described as having a positive outlook on life. She assumes the best of people and situations. Lydia exemplifies
    14·2 answers
  • where again p is the phonon momentum, E is the photon energy and c is the speed of light. When you divide the photon energy foun
    6·1 answer
  • A metal, M, forms an oxide having the formula M2O3 containing 52.92% metal by mass. Determine the atomic weight in g/mole of the
    8·1 answer
  • A small rock is thrown straight up with initial speed v0 from the edge of the roof of a building with height H. The rock travels
    11·1 answer
  • Refrigerant 134a enters a compressor with a mass flow rate of 5 kg/s. The working fluid enters the compressor as a saturated vap
    6·1 answer
  • A student slides her 80.0-kg desk across the level floor of her dormitory room a distance 4.00 m at constant speed. If the coeff
    7·1 answer
  • A man climbs a ladder. Which two quantities can be used to calculate the energy stored of the man at the top of the ladder.
    12·1 answer
  • A hockey puck with a mass of 0.16 kg travels at a velocity of 40 m/s toward a goalkeeper. The goalkeeper has a mass of 120 kg an
    9·1 answer
  • Which season is signaled by average lower temperature and indirect, angled sunlight?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!