answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Shalnov [3]
2 years ago
9

A child on a 2.4 kg scooter at rest throws a 2.2 kg ball. The ball is given a speed of 3.1 m/s and the child and scooter move in

the opposite directions at 0.45 m/s. Find the child's mass.
Physics
1 answer:
kykrilka [37]2 years ago
3 0

Answer:

The child's mass is 14.133 kg

Explanation:

From the principle of conservation of linear momentum, we have;

(m₁ + m₂) × v₁ + m₃ × v₂ = (m₁ + m₂)  × v₃ - m₃ × v₄

We include the negative sign as the velocities were given as moving in the opposite directions

Since the child and the ball are at rest, we have;

v₁ = 0 m/s and v₂= 0 m/s

Hence;

0 = m₁ × v₃ - m₂ × v₄

(m₁ + m₂)× v₃ = m₃ × v₄

Where:

m₁ = Mass of the child

m₂ = Mass of the scooter = 2.4 kg

v₃ = Final velocity of the child and scooter = 0.45 m/s

m₃ = Mass of the ball = 2.4 kg

v₄ = Final velocity of the ball = 3.1 m/s

Plugging the values gives;

(m₁ + 2.4)× 0.45 = 2.4 × 3.1

(m₁ + 2.4) = 16.533

∴ m₁ + 2.4 = 16.533

m₁ = 16.533 - 2.4 = 14.133 kg

The child's mass = 14.133 kg.

You might be interested in
Suppose the foreman had released the box from rest at a height of 0.25 m above the ground. What would the crate's speed be when
Arturiano [62]

Answer:

v = 2.21 m/s

Explanation:

The foreman had released the box from rest at a height of 0.25 m above the ground.

We need to find the speed of the crate when it reaches the bottom of the ramp. Let v is the velocity at the bottom of the ramp. It can be calculated using conservation of energy as follows :

mgh=\dfrac{1}{2}mv^2\\\\v=\sqrt{2gh} \\\\v=\sqrt{2\times 9.8\times 0.25} \\\\v=2.21\ m/s

So, its velocity at the bottom of the ramp is 2.21 m/s.

4 0
1 year ago
A frog jumps to the left with an average speed of
Bingel [31]

Answer:

<h3>0.99 m</h3>

Explanation:

Average velocity is the change of rate of displacement with respect to time;

Average velocity = Displacement/Time

Given

Average velocity of the frog = 1.8m/s

Time = 0.55s

Required

Displacement of the frog

Substitute the given parameters into the formula;

1.8 = displacement/0.55

cross multiply

Displacement = 1.8*0.55

Displacement = 0.99 m

Hence the frog's displacement is 0.99m

7 0
2 years ago
A segment of wire of total length 2.0 m is formed into a circular loop having 5.0 turns. If the wire carries a 1.2-A current, de
docker41 [41]

Answer:

Magnetic field at the center of the loop B=5.89\times 10^{-5}\ T.

Explanation:

It is given that total length of wire is 2 m and number of circular loop is 5 turns.

Therefore ,

5\times ( 2\pi r)=2 \ m .\\\\r=\dfrac{1}{5 \pi}=0.064\ m.

We know , magnetic field at the center of loop is given by :

B=N\dfrac{\mu_o i}{2r}

Putting all values in above equation we get :

B=5\times \dfrac{4\pi\times 10^{-7}\times 1.2}{2\times 0.064}\\\\B=5.89\times 10^{-5}\ T.

Hence , this is the required solution.

8 0
1 year ago
A vehicle has an initial velocity of v0 when a tree falls on the roadway a distance xf in front of the vehicle. The driver has a
Korvikt [17]

Answer:

v^2=v_o^2-2\times a\times (v_o.t)

Explanation:

Given:

Initial velocity of the vehicle, v_o

distance between the car and the tree, x_f

time taken to respond to the situation, t

acceleration of the car after braking, a

Using equation of motion:

v^2=u^2+2a.s ..............(1)

where:

v= final velocity of the car when it hits the tree

u= initial velocity of the  car when the tree falls

a= acceleration after the brakes are applied

s= distance between the tree and the car after the brakes are applied.

s=v_o\times t

Now for this situation the eq. (1) becomes:

v^2=v_o^2-2\times a\times (v_o.t) (negative sign is for the deceleration after the brake is applied to the car.)

5 0
1 year ago
Study the free body diagram above. Which scenario below can best be described with this free body diagram? A. a cup is at rest o
vekshin1

Answer: D

Explanation:

5 0
2 years ago
Other questions:
  • How would reversing the wheel’s initial direction of rotation affect the result??
    6·1 answer
  • In a movie, a character cuts a wire, which stops the countdown timer of a bomb. What does cutting the wire do to the circuit?
    7·2 answers
  • If a 1.50 kg mass revolves at the end of a string 0.50 m long, and its tangential speed is 6.0 m/s, calculate the centripetal fo
    11·2 answers
  • A child pulls a wagon at a constant velocity along a level sidewalk. The child does this by applying a 22 newton force to the wa
    8·1 answer
  • A 50-kg meteorite moving at 1000 m/s strikes Earth. Assume the velocity is along the line joining Earth's center of mass and the
    13·1 answer
  • As an audio CD plays, the frequency at which the disk spins changes.
    13·1 answer
  • A student on a skateboard is moving at a speed of 1.40 m/s at the start of a 2.15 m high and 12.4 m long incline. The total mass
    9·1 answer
  • Imagine you derive the following expression by analyzing the physics of a particular system: M= (mv2r)(mGr2). Simplify the expre
    12·1 answer
  • At a drag race, a jet car travels 1/4 mile in 5.2 seconds. What is the final speed of the
    15·1 answer
  • A girl weighing 45kg is standing on the floor, exerting a downward force of 200N on the floor. The force exerted on her by the f
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!