answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MAXImum [283]
2 years ago
10

At what rate must electrons in a wire vibrate to emit microwaves with a wavelength of 1.00 mm

Physics
2 answers:
Furkat [3]2 years ago
7 0
The equation to use is v=fλ where v is the speed of light, f is the frequency, i.e. the rate at which they vibrate, and λ is the wavelength in meters.

Rearrange the above equation and you get f=v/λ. So the answer is f=300000000/0.001 or 300GHz.
AnnyKZ [126]2 years ago
5 0

Answer:

f = 3×10¹¹ Hz

Explanation:

Relation ship between frequency and wavelength

"The wave speed (v) is defined as the distance traveled by a wave per unit time. If considered that the wave travels a distance of one wavelength in one period,

ν=λ/T

As we know that T = 1/f, hence we can express the above equation as,

V = f λ

The wave speed is equal to the product of its frequency and wavelength, and this implies the relationship between frequency and wavelength."

The relation between frequency and wavelength is  

λ×f = c

c = speed of light = 3×10⁸ m/s

λ = 1.00 mm = 10⁻³ m

f=c/λ

f=(3×10⁸ m/s)/   10⁻³ m

f = 3×10¹¹ Hz

You might be interested in
Voices of swimmers at a pool travel 400 m/s through the air and 1,600 m/s underwater. The wavelength changes from 2 m in the air
frosja888 [35]

The frequency of the wave has not changed.

In fact, the frequency of a wave is given by:

f=\frac{v}{\lambda}

where v is the wave's speed and \lambda is the wavelength.

Applying the formula:

- In air, the frequency of the wave is:

f=\frac{400 m/s}{2 m}=200 Hz

- underwater, the frequency of the wave is:

f=\frac{1600 m/s}{8 m}=200 Hz

So, the frequency has not changed.

3 0
2 years ago
Read 2 more answers
A heat engine accepts 200,000 Btu of heat from a source at 1500 R and rejects 100,000 Btu of heat to a sink at 600 R. Calculate
diamong [38]

To solve the problem it is necessary to apply the concepts related to the conservation of energy through the heat transferred and the work done, as well as through the calculation of entropy due to heat and temperatra.

By definition we know that the change in entropy is given by

\Delta S = \frac{Q}{T}

Where,

Q = Heat transfer

T = Temperature

On the other hand we know that by conserving energy the work done in a system is equal to the change in heat transferred, that is

W = Q_{source}-Q_{sink}

According to the data given we have to,

Q_{source} = 200000Btu

T_{source} = 1500R

Q_{sink} = 100000Btu

T_{sink} = 600R

PART A) The total change in entropy, would be given by the changes that exist in the source and sink, that is

\Delta S_{sink} = \frac{Q_{sink}}{T_{sink}}

\Delta S_{sink} = \frac{100000}{600}

\Delta S_{sink} = 166.67Btu/R

On the other hand,

\Delta S_{source} = \frac{Q_{source}}{T_{source}}

\Delta S_{source} = \frac{-200000}{1500}

\Delta S_{source} = -133.33Btu/R

The total change of entropy would be,

S = \Delta S_{source}+\Delta S_{sink}

S = -133.33+166.67

S = 33.34Btu/R

Since S\neq   0 the heat engine is not reversible.

PART B)

Work done by heat engine is given by

W=Q_{source}-Q_{sink}

W = 200000-100000

W = 100000 Btu

Therefore the work in the system is 100000Btu

4 0
2 years ago
Nancy is pushing her empty grocery cart at a rate of 1.8 m/s. 30 seconds later,
Strike441 [17]
3.Es tarde y mi taxi no llega. Estoy ____.
(5 Points)
preocupada
contenta
3 0
2 years ago
A certain satellite travels in an approximately circular orbit of radius 2.0 × 106 m with a period of 7 h 11 min. Calculate the
kap26 [50]

Answer: Mass of the planet, M= 8.53 x 10^8kg

Explanation:

Given Radius = 2.0 x 106m

Period T = 7h 11m

Using the third law of kepler's equation which states that the square of the orbital period of any planet is proportional to the cube of the semi-major axis of its orbit.

This is represented by the equation

T^2 = ( 4π^2/GM) R^3

Where T is the period in seconds

T = (7h x 60m + 11m)(60 sec)

= 25860 sec

G represents the gravitational constant

= 6.6 x 10^-11 N.m^2/kg^2 and M is the mass of the planet

Making M the subject of the formula,

M = (4π^2/G)*R^3/T^2

M = (4π^2/ 6.6 x10^-11)*(2×106m)^3(25860s)^2

Therefore Mass of the planet, M= 8.53 x 10^8kg

5 0
2 years ago
In pulling two identical carry-on bags through the airport, Mr. Myers and his 13 year old grandson, Vincent, do the same amount
Novay_Z [31]

Answer:

Mr Myers and his son use the same force to pull the bags between the gates

Explanation:

The work done by Mr. Myers in pulling the carryon bags = The work done by his 13 year old grandson in pulling the identical bag

Let F₁ represent the force used by Mr Myers, and let F₂ represent the force F₂ used by his grandson

Let d represent the distance through the gate

Therefore, given that Work done, W = Force, F × Distance, we have;

The work done by Mr Myers between the gates, W₁ = F₁ × d

The work done by his grandson between the gates, W₂ = F₂ × d

Where, the work done by both Mr Myers and his grandson are equal, we have;

W₁ = W₂ and therefore, F₁ × d = F₂ × d, which gives;

F₁ = F₂, the force used by both Mr Myers and his son between the gates are equal.

5 0
2 years ago
Other questions:
  • For the meter stick shown in figure 10-4, the force F1 10.0 N acts at 10.0 cm. What is the magnitude of torque due to F1 about a
    13·1 answer
  • A box is sliding along a frictionless surface and gets to a ramp. Disregarding friction, how fast should the box be going on the
    14·2 answers
  • Explain how scientists know that elephants and hyraxes are related. Be sure to include anatomical similarities as well as fossil
    7·2 answers
  • Which magnetic property best describes a magnet’s ability to act at a distance? Magnets are dipolar. Magnets attract only certai
    14·2 answers
  • When you skid to a stop on your bike, you can significantly heat the small patch of tire that rubs against the road surface. Sup
    9·1 answer
  • A cleaver physics professor wants to create a situation where a block starts from rest at the top of a 31.0° inclined plane and
    13·1 answer
  • An object moving at a velocity of 32m/s slows to a stop in 4 seconds. What was its acceleration?
    11·2 answers
  • a horse gallops a distance of 60 meters in 15 seconds. then, he stops to eat some grass for 20 seconds. next, he trots for 25 se
    5·1 answer
  • A person with normal vision can focus on objects as close as a few centimeters from the eye up to objects infinitely far away. T
    7·1 answer
  • Read the claim about caffeine. Caffeine improves mental alertness and motor coordination. A university research study was conduc
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!