Answer: m= 35.6 kg
Explanation:
For finding the mass of the stone we have the formula
v= 
Here, Tension= m*g = m*9.81
and linear mass density= 
Linear mass density= 
Linear mass density= 0.0127 kg/m
Velocity= 
Velocity= 2 * 
Velocity= 165.8 m/s
So putting all these values in equation we get
v= 
165.8= 
Solving we get
m= 35.58 kg
or m= 35.6 kg
Answer:
option (E) 1,000,000 J
Explanation:
Given:
Mass of the suspension cable, m = 1,000 kg
Distance, h = 100 m
Now,
from the work energy theorem
Work done by the gravity = Work done by brake
or
mgh = Work done by brake
where, g is the acceleration due to the gravity = 10 m/s²
or
Work done by brake = 1000 × 10 × 100
or
Work done by brake = 1,000,000 J
this work done is the release of heat in the brakes
Hence, the correct answer is option (E) 1,000,000 J
Answer:
The two of the following measurements, when taken together, would allow engineers to find the total mechanical energy dissipated during the skid
B. The contact area of each tire with the track.
C. The co-efficent of static friction between the tires and the track.
D. The co-efficent of static friction between the tires and the track.
Explanation:
The angular velocity of the orbit about the sun is:
w = 1 rev / year = 1 rev / 3.15 × 10^7 s
Now in 1 rev there is 360° or 2π rad, therefore:
w = 2π rad / 3.15 × 10^7 s
To convert in linear velocity, multiply the rad /s by the
radius:
v = (2π rad / 3.15 × 10^7 s) * 93,000,000 miles
<span>v = 18.55 miles / s = 29.85 km / s</span>
This can be answered using trigonometric analysis. This sloped path that is 150 m long is the hypotenuse of the triangle. The adjacent angle would then be 65 degrees. Given these:
sin 65 = h / 150
Where: h = vertical displacement = 150 (sin 65)
h = 135.95 meters