Answer:
the expression of current in the loop enclosed to the left of the capacitor plate is

Explanation:
As we know by Ampere's law that line integral of magnetic field around a closed loop is proportional to the current enclosed in the path
So we will have

so we have

so above is the expression of current in the loop enclosed to the left of the capacitor plate
Answer:
The <em>correct</em> statements are:
- <em>A. The electric field is nonuniform.</em>
- <em>D. Charge Q is positive.</em>
- <em>E. If charge A moves toward charge Q, it must be a negative charge</em>
Explanation:
The answer choices are:
- A. The electric field is nonuniform.
- B. The electric field is uniform.
- E. If charge A moves toward charge Q, it must be a negative charge.
- F. If charge A moves toward charge Q, it must be a positive charge.
<h2>Solution</h2>
The <em>electric field</em> is the electrostatic force per unit of charge,

around around a charge, where another charge would experience the electrostatic force.
The electric field lines are shown in a diagram with arrows ditributed radially away from a positive charge and radially toward a negative charge.
Since the arrows are away from Q, Q is a positive charge: <em>statement D.</em>
Since the size of the arrows decreases as you move away from Q the stregth of the field is not uniform: <em>statement A.</em>
Since the charge Q is positive, a negative charge would be attracted toward it: <em>statement E.</em>
Answer:
All matter contained electrons
Explanation:
The discovery and characterization of cathode ray suggested that it was a subatomic particle and cathode ray ( electron) was the first discovered. It immensely became the strong explanatory tool for chemical bond. This can be attributed to the the ease with which electron move from one atom to the other.
Answer:
Velocity = v = 35 m/s
Explanation:
Kinetic energy of an object is defined as the energy possess by an object due to its motion. Kinetic energy K.E of an object is equal to the half of the mass of that object multiplied by square of the object's velocity.
Mathematically,



v = 35 m/s
Answer:
Explanation:
Given that, .
R = 12 ohms
C = 500μf.
Time t =? When the charge reaches 99.99% of maximum
The charge on a RC circuit is given as
A discharging circuit
Q = Qo•exp(-t/RC)
Where RC is the time constant
τ = RC = 12 × 500 ×10^-6
τ = 0.006 sec
The maximum charge is Qo,
Therefore Q = 99.99% of Qo
Then, Q = 99.99/100 × Qo
Q = 0.9999Qo
So, substituting this into the equation above
Q = Qo•exp(-t/RC)
0.9999Qo = Qo•exp(-t / 0.006)
Divide both side by Qo
0.9999 = exp(-t / 0.006)
Take In of both sodes
In(0.9999) = In(exp(-t / 0.006))
-1 × 10^-4 = -t / 0.006
t = -1 × 10^-4 × - 0.006
t = 6 × 10^-7 second
So it will take 6 × 10^-7 a for charge to reached 99.99% of it's maximum charge