answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olya-2409 [2.1K]
2 years ago
12

If John mows 11.5 meters of lawn from east

Physics
1 answer:
Oksanka [162]2 years ago
8 0
I believe it would be 1.6 East
You might be interested in
Select the correct expression that gives the block's acceleration at a displacement x from the equilibrium position. Note that x
skad [1K]

Answer:

d. a=−k/mx

Explanation:

To know what is the correct expression for the acceleration you take into account the second Newton law, that is:

F=ma ( 1 )

next, you equal the expression ( 1 ) to the force in a mass-string system, that is F=-kx.

ma=-kx\\\\a=-\frac{kx}{m}

hence, the acceleration is:

d. a=−kmx

8 0
2 years ago
Read 2 more answers
Suppose you were hanging in empty space at rest, far from the Earth, but at the same distance from the Sun as the Earth. What mi
schepotkina [342]

Answer:

V = 42187 m/s = 42.18 km/s

Explanation:

given data:

mass of sun is  = 2\times 10^{30} kg

radius of earth orbit is 1.5\times 10^{11} m

minimum speed can be determined by using following formula

V = (\frac{2gM}{r}))^{1/2}

where G is \times 10^{-11}

Plugging all value to get desired value

V  =(\frac{2\times 6.674 \times 10^{-11}2\times 10^{30}}{1.5\times 10^{11}})^{1/2}

V = 42187 m/s = 42.18 km/s

4 0
2 years ago
Read 2 more answers
In ideal flow, a liquid of density 850 kg/m3 moves from a horizontal tube of radius 1.00 cm into a second horizontal tube of rad
Crank

Answer:

a)   Q = π r₁ √ 2ΔP / rho [r₁² / r₂² -1] , b) Q = 3.4 10⁻² m³ / s , c)      Q = 4.8 10⁻² m³ / s

Explanation:

We can solve this fluid problem with Bernoulli's equation.

         P₁ + ½ ρ v₁² + ρ g y₁ = P₂ + ½ ρ v₂² + ρ g y₂

With the two tubes they are at the same height y₁ = y₂

        P₁-P₂ = ½ ρ (v₂² - v₁²)

The flow rate is given by

         A₁ v₁ = A₂ v₂

         v₂ = v₁ A₁ / A₂

We replace

         ΔP = ½ ρ [(v₁ A₁ / A₂)² - v₁²]

         ΔP = ½ ρ v₁² [(A₁ / A₂)² -1]

Let's clear the speed

         v₁ = √ 2ΔP /ρ[(A₁ / A₂)² -1]

The expression for the flow is

           Q = A v

           Q = A₁ v₁

           Q = A₁ √ 2ΔP / rho [(A₁ / A₂)² -1]

The areas are

            A₁ = π r₁

            A₂ = π r₂

We replace

        Q = π r₁ √ 2ΔP / rho [r₁² / r₂² -1]

Let's calculate for the different pressures

      r₁ = d₁ / 2 = 1.00 / 2

      r₁ = 0.500 10⁻² m

      r₂ = 0.250 10⁻² m

b) ΔP = 6.00 kPa = 6 10³ Pa

      Q = π 0.5 10⁻² √(2 6.00 10³ / (850 (0.5² / 0.25² -1))

       Q = 1.57 10⁻² √(12 10³/2550)

        Q = 3.4 10⁻² m³ / s

c) ΔP = 12 10³ Pa

        Q = 1.57 10⁻² √(2 12 10³ / (850 3)

         Q = 4.8 10⁻² m³ / s

5 0
2 years ago
A 7.5 nC point charge and a - 2.9 nC point charge are 3.2 cm apart. What is the electric field strength at the midpoint between
Oduvanchick [21]

Answer:

Net electric field, E_{net}=91406.24\ N/C

Explanation:

Given that,

Charge 1, q_1=7.5\ nC=7.5\times 10^{-9}\ C

Charge 2, q_2=-2.9\ nC=-2.9\times 10^{-9}\ C

distance, d = 3.2 cm = 0.032 m

Electric field due to charge 1 is given by :

E_1=\dfrac{kq_1}{r^2}

E_1=\dfrac{9\times 10^9\times 7.5\times 10^{-9}}{(0.032)^2}

E_1=65917.96\ N/C

Electric field due to charge 2 is given by :

E_2=\dfrac{kq_2}{r^2}

E_2=\dfrac{9\times 10^9\times 2.9\times 10^{-9}}{(0.032)^2}

E_2=25488.28\ N/C

The point charges have opposite charge. So, the net electric field is given by the sum of electric field due to both charges as :

E_{net}=E_1+E_2

E_{net}=65917.96+25488.28

E_{net}=91406.24\ N/C

So, the electric field strength at the midpoint between the two charges is 91406.24 N/C. Hence, this is the required solution.

3 0
2 years ago
Each shot of the laser gun most favored by Rosa the Closer, the intrepid vigilante of the lawless 22nd century, is powered by th
mote1985 [20]

Answer:

U = 1794.005 × 10⁶ J

Explanation:

Data provided;

Capacitance of the original capacitor, C = 1.27 F

Potential difference applied to the original capacitor, V = 59.9 kV

= 59.9 × 10³ V

Now,

The Potential energy (U) for the capacitor is calculated as:

Potential energy of the original capacitor, U = \frac{\textup{1}}{\textup{2}}  × C × V²

on substituting the respective values, we get

U = \frac{\textup{1}}{\textup{2}}  × 1.27 × ( 59.9 × 10³ )²

or

U = 1794.005 × 10⁶ J

7 0
2 years ago
Other questions:
  • Find the moments Mx and My and the center of mass of the system, assuming that the particles have equal mass m.
    7·1 answer
  • Is the electric potential energy of a particle with charge q the same at all points on an equipotential surface?
    13·1 answer
  • Find the centripetal force needed by a 1275 kg car to make a turn of radius 40.0 m at a speed of 25.0 km/h
    12·2 answers
  • Give the symbols for 4 species that are isoelectronic with the telluride ion, te2-.
    12·1 answer
  • As a youngster, you drive a nail in the trunk of a young tree that is 3 meters tall. The nail is about 1.5 meters from the groun
    9·1 answer
  • A 1.7-kg block of wood rests on a rough surface. A 0.011-kg bullet strikes the block with a speed of 670 m/s and embeds itself.
    5·1 answer
  • What's the diameter of a dish antenna that will receive 10−20W of power from Voyager at this time? Assume that the radio transmi
    14·1 answer
  • Question must be solved using only symbolic algebra.During the experiment if you could triple the breakaway magnetic force with
    7·1 answer
  • The surface is tilted to an angle of 37 degrees from the horizontal, as shown above in Figure 3. The blocks are each given a pus
    7·1 answer
  • An x-ray tube is an evacuated glass tube that produces electrons at one end and then accelerates them to very high speeds by the
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!