answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ludmilka [50]
1 year ago
14

Lucy has three sources of sound that produce pure tones with wavelengths of 60cm, 100cm, and 124cm.

Physics
1 answer:
denis23 [38]1 year ago
8 0

Answer:

a) We see that the tubes of lengths 15, 45 and 75 resonate with this wavelength

b) There is resonance for the lengths 25 and 75 cm

c) Resonance occurs for tubes with length 31 and 93 cm

Explanation:

To find the length of the tube that has resonance we must find the natural frequencies of the tubes, for this at the point that the tube is closed we have a node and the open point we have a belly; in this case the fundamental wave is

              λ = 4L

The next resonance called first harmonic    λ₃ = 4L / 3

The next fifth harmonic resonance               λ₅ = 4L / 5,

WE see that the general form is                    λ ₙ= 4L / n          n = 1, 3, 5 ...

Let's use these expressions for our problem

Let's start with the shortest wavelength.

a) Lam = 60 cm

Let's look for the tube length that this harmonica gives

               L = λ n / 4

To find the shortest tube length n = 1

               L = 60 1/4

              L = 15 cm

For n = 3

              L = 60 3/4

              L = 45 cm

For n = 5

              L = 60 5/4

              L = 75 cm

For n = 7

             L = 60 7/4

             L = 105cm

We see that the tubes of lengths 15, 45 and 75 resonate with this wavelength, in different harmonics 1, 3 and 5

.b) λ = 100 cm

For n = 1

         L = 100 1/4

        L = 25 cm

For n = 3

        L = 100 3/4

       L = 75 cm

For n = 5

       L = 100 5/4

      L = 125 cm

There is resonance for the lengths 25 and 75 cm in the fundamental and third ammonium frequency

c) λ=  124 cm

       L = 124 1/4

       L = 31 cm

For the second resonance

      L = 124 3/4

      L = 93 cm

Resonance occurs for tubes with length 31 and 93 cm in the fundamental harmonics and third harmonics

You might be interested in
Young athlete has a mass of 42 kg one day there is no wind shear and hundred metre race in 14.2 second a sketch graph not in ske
Fudgin [204]

Answer:

I don't get the question

8 0
1 year ago
Read 2 more answers
Megan rode the bus to school, which is located 8 kilometers from her home. If Megan's frame of reference is her house, and it to
Dmitriy789 [7]

Answer:

Explanation: idk sry

7 0
1 year ago
A blue puck has a velocity of 3i –4j m/s. Its mass is 20 kg. What is its momentum?
damaskus [11]
P = m * v
v = {3i - 4j} = square root (3^2 + 4^2) = 5
P = 20 * 5
P = 100 kg m/s
6 0
1 year ago
Read 2 more answers
In a rocket-propulsion problem the mass is variable. Another such problem is a raindrop falling through a cloud of small water d
Alexxandr [17]

Answer:

a) a = g / 3

b) x (3.0) = 14.7 m

c) m (3.0) = 29.4 g

Explanation:

Given:-

- The following differential equation for (x) the distance a rain drop has fallen has the form:

                             x*g = x * \frac{dv}{dt} + v^2

- Where,                v = Speed of the raindrop

- Proposed solution to given ODE:

                             v = a*t

Where,                  a = acceleration of raindrop

Find:-

(a) Using the proposed solution for v find the acceleration a.

(b) Find the distance the raindrop has fallen in t = 3.00 s.

(c) Given that k = 2.00 g/m, find the mass of the raindrop at t = 3.00 s.

Solution:-

- We know that acceleration (a) is the first derivative of velocity (v):

                             a = dv / dt   ... Eq 1

- Similarly, we know that velocity (v) is the first derivative of displacement (x):

                            v = dx / dt  , v = a*t ... proposed solution (Eq 2)

                             v .dt = dx = a*t . dt

- integrate both sides:

                             ∫a*t . dt = ∫dt

                             x = 0.5*a*t^2  ... Eq 3

- Substitute Eq1 , 2 , 3 into the given ODE:

                            0.5*a*t^2*g = 0.5*a^2 t^2 + a^2 t^2

                                                = 1.5 a^2 t^2

                            a = g / 3

- Using the acceleration of raindrop (a) and t = 3.00 second and plug into Eq 3:

                           x (t) = 0.5*a*t^2

                           x (t = 3.0) = 0.5*9.81*3^2 / 3

                           x (3.0) = 14.7 m  

- Using the relation of mass given, and k = 2.00 g/m, determine the mass of raindrop at time t = 3.0 s:

                           m (t) = k*x (t)

                           m (3.0) = 2.00*x(3.0)

                           m (3.0) = 2.00*14.7

                           m (3.0) = 29.4 g

6 0
2 years ago
A car is pulled with a force of 10,000 N. The car's mass is 1267 kg. But, the car covers 394.6 m in 15 seconds
solong [7]

A. Formula: F=ma or F/m=a

10,000N/1,267kg≈7.9m/s^{2}

B. Formula: a=\frac{V-V_{0} }{t} and s=d/t

speed= 394.6/15

s=26.3m/s

a=\frac{26.3-0}{15}

a=1.75m/s^{2}

C. 7.9-1.75=difference of 6.15m/s^{2}

D. The force that most likely caused this difference is friction forces

3 0
1 year ago
Read 2 more answers
Other questions:
  • Explain why the extrapolated temperature is used to determine the maximun temperature of the mixture rather than the highest rec
    10·2 answers
  • Assume that the light from the flashlight is light from a star. Identify the spot where the light from this “star” is most conce
    12·2 answers
  • The motion of a particle connected to a spring is described by x = 10 sin (pi*t). At
    8·1 answer
  • For nitrogen feel like with its temperature must be within 12.78 Fahrenheit of -333.22 Fahrenheit which equation can be used to
    7·2 answers
  • Follow these steps to solve this problem: Two identical loudspeakers, speaker 1 and speaker 2, are 2.0 m apart and are emitting
    10·1 answer
  • Wind blows at the speed of 30m/s across a 175m^2 flat roof if a house.
    14·1 answer
  • Write a hypothesis about the effect of the angle of the track on the acceleration of the cart. Use the "if . . . then . . . beca
    7·1 answer
  • Gibbons, small Asian apes, move by brachiation, swinging below a handhold to move forward to the next handhold. A 8.6 kg gibbon
    6·1 answer
  • Find the work done in pumping gasoline that weighs 6600 newtons per cubic meter. A cylindrical gasoline tank 3 meters in diamete
    7·1 answer
  • If I0 is the intensity of the unpolarized light incident on the first polarizer, and I1 and I2 denote the intensity of the light
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!