Answer:
w = √ 1 / CL
This does not violate energy conservation because the voltage of the power source is equal to the voltage drop in the resistence
Explanation:
This problem refers to electrical circuits, the circuits where this phenomenon occurs are series RLC circuits, where the resistor, the capacitor and the inductance are placed in series.
In these circuits the impedance is
X = √ (R² + (
-
)² )
where Xc and XL is the capacitive and inductive impedance, respectively
X_{C} = 1 / wC
X_{L} = wL
From this expression we can see that for the resonance frequency
X_{C} = X_{L}
the impedance of the circuit is minimal, therefore the current and voltage are maximum and an increase in signal intensity is observed.
This does not violate energy conservation because the voltage of the power source is equal to the voltage drop in the resistence
V = IR
Since the contribution of the two other components is canceled, this occurs for
X_{C} = X_{L}
1 / wC = w L
w = √ 1 / CL
<h2>
Answer: 117.626m/s</h2>
Explanation:
The escape velocity
is given by the following equation:
(1)
Where:
is the Gravitational Constant and its value is
is the mass of the asteroid
is the radius of the asteroid
On the other hand, we know the density of the asteroid is
and its volume is
.
The density of a body is given by:
(2)
Finding
:
(3)
(4) This is the mass of the spherical asteroid
In addition, we know the volume of a sphere is given by the following formula:
(5)
Finding
:
(6)
(7)
(8) This is the radius of the asteroid
Now we have all the necessary elements to calculate the escape velocity from (1):
(9)
Finally:
This is the minimum initial speed the rocks need to be thrown in order for them never return back to the asteroid.
Answer:
solved
Explanation:
a) F_net = (F2 - F3)i - F1 j
b) |Fnet| = sqrt( (F2 - F3)^2 + F1^2)
= sqrt( (9- 5)^2 + 1^2)
= 4.123 N
c) θ = tan^-1( (Fnet_y/Fnet_x)
= tan^-1( -1/(9-5) )
= -14.036°
Answer:
-5.1 kg m/s
Explanation:
Impulse is the change in momentum.
Change in momentum= final momentum - initial momentum=m
+m
Plugging in the values= -0.15*24 - (0.15*10) (The motion towards the pitcher is negative as the initial motion is considered to be positive)
Impulse=-5.1 kg m/s (-ve means that it is the impulse towards the pitcher)
Since they're going in the same direction, just add the velocities together.
7.3 m/s + 0.34 m/s = 7.64m/s