answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
spin [16.1K]
2 years ago
15

Reset the PhET simulation (using the button in the lower right) and set it up in the following manner: select Oscillate, select

No End, and use the parameters in parentheses by sliding the bars for Amplitude (1.00 cmcm), Frequency (1.40 HzHz ), Damping (none), and Tension (highest). Using the available Rulers, calculate the frequency of a photon that corresponds to the wavelength of the resulting wave. Assume the length with units (cmcm) of the ruler represents the real photon wavelength and that the speed of light is 3.00×108 m/s3.00×108 m/s.

Physics
1 answer:
lubasha [3.4K]2 years ago
5 0

Answer:

Check Explanation

Explanation:

This is a question that is as a result of an experimental procedure.

The Phet simulation is put on the settings given in the question;

- select Oscillate

- Select No End

- Use the parameters in parentheses by sliding the bars for Amplitude (1.00 cm), Frequency (1.40 Hz)

- Damping (none)

- Tension (highest)

I'll attach an interface of the Phet simulation to this solution.

Once all of these settings have been fixed, the simulation gives a wave pattern whose wavelength can be read from the ruler attached to the background of the simulation.

The wavelength is the distance from crest to crest or from trough to trough.

From the simulation example I have attached, the distance from crest to crest is from the green indicator on one crest to the green indicator on the next crest, that is about 5 to 5.1 cm

The velocity of a wave, v, is related to the frequency, f, and wavelength, λ of the wave through

v = fλ

For the photon, the velocity of the wave is the speed of light,

v = c = (3.00 × 10⁸) m/s

The wavelength computed from the simulation = λ = 5.1 cm = 0.051 m

c = fλ

frequency = (c/λ) = (3.00 × 10⁸) ÷ 0.051 = (5.88 × 10⁹) Hz

So, this step can be used to obtaim rhe required frequency of the photon, just follow these steps and use the calculation method too. You should be able to obtain the frequency of the photon in your experiment.

Hope this Helps!!!

You might be interested in
A diver explores a shallow reef off the coast of Belize. She initially swims d1 = 74.8 m north, makes a turn to the east and con
Nataly [62]

Answer:R=1607556m

θ=180degrees

Explanation:

d1=74.8m

d2=160.7km=160.7km*1000

d2=160700m

d3=80m

d4=198.1m

Using analytical method :

Rx=-(160700+75*cos(41.8))= -160755.9m

Ry= -(74.8+75sin(41.8))-198.1=73m

Magnitude, R:

R=√Rx+Ry

R=√160755.9^2+20^2=160755.916

R=160756m

Direction,θ:

θ=arctan(Rx/Ry)

θ=arctan(-73/160755.9)

θ=-7.9256*10^-6

Note that θ is in the second quadrant, so add 180

θ=180-7.9256*10^6=180degrees

8 0
2 years ago
Mickey, a daredevil mouse of mass m , m, is attempting to become the world's first "mouse cannonball." He is loaded into a sprin
Sati [7]

Answer:

  h = v₀² / 2g ,      h = k/4g     x²

Explanation:

In this exercise we can use the law of conservation of energy at two points, the lowest, before the shot and the highest point that the mouse reaches

Starting point. Lower compressed spring

              Em₀ = K = ½ m v²

Final point. Highest on the path

             Em_{f} = U = mg h

             

As or no friction the energy is conserved  

              Em₀ =  Em_{f}

              ½ m v₀²² = m g h

             h = v₀² / 2g

We can also use as initial energy the energy stored in the spring that will later be transferred to the mouse

                  ½ k x² = 2 g h

                  h = k/4g     x²

8 0
2 years ago
Read 2 more answers
Dane is holding an 8 kilogram box 2 metres above the ground. How much energy is in the box's gravitational potential energy stor
9966 [12]

156.8 Joules of energy is in the box's gravitational potential energy store

<u>Explanation</u>:

<em>Given:</em>

Mass of the box Dane is holding = 8 Kilograms

Height at which Dane is holding the box above the ground= 2 metres

<em>To Find:</em>

Gravitational potential energy in the box=?

<em>Solution:</em>

gravitational potential energy is the work done per mass on a object to move that object from one fixed location to to another location against gravity.Its unit is joules or J

Thus  Gravitational potential energy is  represented as,

PE_g=mgh

where

PE_g is the gravitational potential energy

m is the mass

h is the height

g is the gravitational force( 9.8 m/s^2)

Now substituting the given values,

PE_g=8\times 9.8\times 2

PE_g=156.8 Joules

4 0
2 years ago
A shot putter releases the shot some distance above the level ground with a velocity of 12.0 m/s, 51.0 ∘above the horizontal. Th
alina1380 [7]

A) Zero

The motion of the shot is a projectile's motion: this means that there is only one force acting on the projectile, which is gravity. However, gravity only acts in the vertical direction: so, there are no forces acting in the horizontal direction. Therefore, the x-component of the acceleration is zero.

B) -9.8 m/s^2

The vertical acceleration is given by the only force acting in the vertical direction, which is gravity:

F=mg

where m is the projectile's mass and g is the gravitational acceleration. Therefore, the y-component of the shot's acceleration is equal to the acceleration due to gravity:

a_y = g = -9.8 m/s^2

where the negative sign means it points downward.

C) 7.6 m/s

The x-component of the shot's velocity is given by:

v_x = v_0 cos \theta

where

v_0 = 12.0 m/s is the initial velocity

\theta=51.0^{\circ} is the angle of the shot

Substituting into the equation, we find

v_x = (12.0 m/s)(cos 51^{\circ})=7.6 m/s

D) 9.3 m/s

The y-component of the shot's velocity is given by:

v_y = v_0 sin \theta

where

v_0 = 12.0 m/s is the initial velocity

\theta=51.0^{\circ} is the angle of the shot

Substituting into the equation, we find

v_y = (12.0 m/s)(sin 51^{\circ})=9.3 m/s

E) 7.6 m/s

We said at point A) that the acceleration along the x-direction is zero: therefore, the velocity along the x-direction does not change, so the x-component of the velocity at the end of the trajectory is equal to the x-velocity at the beginning:

v_x = 7.6 m/s

F) -11.1 m/s

The y-component of the velocity at time t is given by:

v_y(t) = v_y + at

where

v_y = 9.3 m/s is the initial y-velocity

a = g = -9.8 m/s^2 is the vertical acceleration

t is the time

Since the total time of the motion is t=2.08 s, we can substitute this value into the equation, and we find:

v_y(2.08 s)=9.3 m/s + (-9.8 m/s^2)(2.08 s)=-11.1 m/s

where the negative sign means the vertical velocity is now downward.

3 0
2 years ago
The eiffel tower has a mass of 7.3 million kilograms and a height of 324 meters. its base is square with a side length of 125 me
uranmaximum [27]

Since the tower base is square with a side length of  125 m,

Therefore,

(125\ m)^2+ (125\ m)^2=31250 m^2

Square root of 31250 = 176.776953 (Diameter) , so this is the diameter of the cylinder to enclose it, and radius, r = 88.38834765 m and height, h = 324 m.

The volume of cylinder,

=\pi r^2h=3.14(88.38834765 m)^2\times 324 m =7948168.803\ m^3

Thus, the mass of the air in the cylinder,

=1.225\ kg/m^3 \times 7948168.803\ m^3=9736506.78\ kg

Hence, the mass of the air in the cylinder is this more  than the mass of the tower.


4 0
1 year ago
Other questions:
  • The first thing to focus on when creating a workout plan is
    7·2 answers
  • a 2 meter tall astronaut standing on mars drops her glasses from her nose. how long will the astronaut have before he hits the g
    13·1 answer
  • A band director instructs students to play a pitch louder. How will the sound wave change when the band plays the same pitch lou
    8·2 answers
  • The energy difference between the 5d and the 6s sublevels in gold accounts for its color. If this energy difference is about 2.7
    6·1 answer
  • Follow these steps to solve this problem: Two identical loudspeakers, speaker 1 and speaker 2, are 2.0 m apart and are emitting
    6·1 answer
  • A car traveling at a velocity v can stop in a minimum distance d. What would be the car's minimum stopping distance if it were t
    10·1 answer
  • A gold wire that is 1.8 mm in diameter and 15 cm long carries a current of 260 mA. How many electrons per second pass a given cr
    14·1 answer
  • For nitrogen feel like with its temperature must be within 12.78 Fahrenheit of -333.22 Fahrenheit which equation can be used to
    7·2 answers
  • What is the internal energy (to the nearest joule) of 10 moles of Oxygen at 100 K?
    15·1 answer
  • Calculate the mass (in kg) of 54.3 m³ of granite. The density of granite is 2700 kg/m³. Give your answer to 2 decimal places.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!