<span>A = area of styrofoam
M = mass of stryofoam = A*h*rho_s
m = mass of swimmer
Total mass = m + M = m + A*h*rho_s
Downward force = g*(total mass) = g*[m + A*h*rho_s]
The slab is completely submerged.
Buoyant force = g*(mass of water displaced) = g*[A*h*rho_w]
Equate these
g*[m + A*h*rho_s] = g*[A*h*rho_w]
m + A*h*rho_s = A*h*rho_w
A*h*[rho_w - rho_s] = m
A = m/[h*(rho_w - rho_s)]</span>
Answer:
<em>Entropy Change = 0.559 Times</em>
Explanation:
Entropy change is determined by the change in the micro-states of a system. As we know that the micro-states are the same as measure of disorderness between initial and final states, that's the the amount of change in micro-states determine how much of entropy has changed in the system.
Answer:

Explanation:
We are given that
Initial velocity=u=18ft/s
Final velocity,v=38ft/s
Time=t=3 s
We have to find the average acceleration over that 3 s period.
We know that
Average acceleration,a=
Using the formula
Average acceleration,a=
Average acceleration,a=
Average acceleration,a=
Hence, the average acceleration=
Answer:
Explanation:
Force of friction at car B ( break was applied by car B ) =μ mg = .65 x 2100 X 9.8 = 13377 N .
work done by friction = 13377 x 7.30 = 97652.1 J
If v be the common velocity of both the cars after collision
kinetic energy of both the cars = 1/2 ( 2100 + 1500 ) x v²
= 1800 v²
so , applying work - energy theory ,
1800 v² = 97652.1
v² = 54.25
v = 7.365 m /s
This is the common velocity of both the cars .
To know the speed of car A , we shall apply law of conservation of momentum .Let the speed of car A before collision be v₁ .
So , momentum before collision = momentum after collision of both the cars
1500 x v₁ = ( 1500 + 2100 ) x 7.365
v₁ = 17.676 m /s
= 63.63 mph .
( b )
yes Car A was crossing speed limit by a difference of
63.63 - 35 = 28.63 mph.
Ok so it would be late and the relative velocity would be 190 m/s because 200 m/s - 10 m/s is 190 m/s. Hope this helps.