Answer:
Torque τ =w ×0 = 0
Explanation:
We know that the torque is given by the product of the force and perpendicular distance between the force and the axis.
Here the gravity force act at the center and the rotational axis is also passing through the center.
Therefore the perpendicular distance between the force and the rotational axis would be zero.
Hence the torque will be
Torque = Force × Perpendicular distance
Torque = mg×0 = 0
Therefore the torque would be zero.
To solve this problem we will use the concepts related to angular motion equations. Therefore we will have that the angular acceleration will be equivalent to the change in the angular velocity per unit of time.
Later we will use the relationship between linear velocity, radius and angular velocity to find said angular velocity and use it in the mathematical expression of angular acceleration.
The average angular acceleration

Here
= Angular acceleration
Initial and final angular velocity
There is not initial angular velocity,then

We know that the relation between the tangential velocity with the angular velocity is given by,

Here,
r = Radius
= Angular velocity,
Rearranging to find the angular velocity

Remember that the radius is half te diameter.
Now replacing this expression at the first equation we have,


Therefore teh average angular acceleration of each wheel is 
Answer:
v=8m/s
Explanation:
To solve this problem we have to take into account, that the work done by the friction force, after the collision must equal the kinetic energy of both two cars just after the collision. Hence we have
![W_{f}=E_{k}\\W_{f}=\mu N=\mu(m_1+m_1)g\\E_{k}=\frac{1}{2}[m_1+m_2]v^2](https://tex.z-dn.net/?f=W_%7Bf%7D%3DE_%7Bk%7D%5C%5CW_%7Bf%7D%3D%5Cmu%20N%3D%5Cmu%28m_1%2Bm_1%29g%5C%5CE_%7Bk%7D%3D%5Cfrac%7B1%7D%7B2%7D%5Bm_1%2Bm_2%5Dv%5E2)
where
mu: coefficient of kinetic friction
g: gravitational acceleration
We can calculate the speed of the cars after the collision by using

Now , we can compute the speed of the second car by taking into account the conservation of the momentum

the car did not exceed the speed limit
Hope this helps!!
Answer:
Diameter of the cylinder will be 
Explanation:
We have given young's modulus of steel
Change in length 
Length of rod 
Load F = 11100 KN
Strain is given by 
We know that young's modulus 
So 

We know that stress 
So 

So 
VO2 max is considered to be the most valid measure<span> of </span>cardio respiratory fitness<span>. It </span>measures<span> the capacity of the heart, lungs, and blood to transport oxygen to the working muscles, and </span>measures<span> the utilization of oxygen by the muscles during exercise.</span>