Answer:
In this case, the index of seawater replacement is 1.33, the index of refraction of air is 1, which is why the angle of replacement is less than the incident angle, so the fish seems to be closer
In the opposite case, when the fish looked at the face of the man, the angle of greater reason why it seems to be further away
Explanation:
This exercise can be analyzed with the law of refraction that establishes that a ray of light when passing from one medium to another with a different index makes it deviate from its path,
n₁ sin θ₁ = n₂ sin θ₂
where n₁ and n₂ are the refractive indices of the incident and refracted means and the angles are also for these two means.
In this case, the index of seawater replacement is 1.33, the index of refraction of air is 1, which is why the angle of replacement is less than the incident angle, so the fish seems to be closer
1 sin θ₁ = 1.33 sin θ₂
θ₂ = sin⁻¹ ( 1/1.33 sin θ₁)
In the opposite case, when the fish looked at the face of the man, the angle of greater reason why it seems to be further away
The risk when a PWC (Personal Water Craft) passes too closely behind another boat is creating a blind spot. Blind spot can create a collision.
The boat will block the view of the PWC of oncoming boats, as well as the oncoming boat's view of the PWC.So, that's why it is very important to maintain a proper lookout while turning the PWC and beware of your blind spots.
Answer:
I = 4.75 A
Explanation:
To find the current in the wire you use the following relation:
(1)
E: electric field E(t)=0.0004t2−0.0001t+0.0004
ρ: resistivity of the material = 2.75×10−8 ohm-meters
J: current density
The current density is also given by:
(2)
I: current
A: cross area of the wire = π(d/2)^2
d: diameter of the wire = 0.205 cm = 0.00205 m
You replace the equation (2) into the equation (1), and you solve for the current I:

Next, you replace for all variables:

hence, the current in the wire is 4.75A