Okay, here is my stab at this, I hope it helps!
You know the bullet's initial velocity, V₀ = 450 m/s
You know the final velocity, V = 220 m/s
You also know how long the bullet accelerates (actually decelerates), 14cm, or .14 m
With this information, you learn that you need this equation.
V² = V₀² + 2a (x - x₀), because we have all the information except a, which is the acceleration. So putting it into the equation, it looks like this.
(220m/s)² = (450m/s)² +2a(.14m - 0m)
I'll let you solve the rest, but here are some hints. Your answer will be really big because the bullet slows down really quickly in a really small distance, and you answer will be negative, because this acceleration is causing the bullet to go slower, which is also called deceleration. Hope that helps!
Answer:

Explanation:
Given that,
The radius of sphere, r = 0.3 m
Distance from the center of the sphere to the point P, x = 0.5 m
Electric field at point P,
(radially outward)
The maximum electric field is at the surface of the sphere. We know that the electric field is inversely proportional to the distance. So,




So, the magnitude of the electric field due to this sphere is 41666.66 N/C. Hence, this is the required solution.
Answer:
The velocity is 
Explanation:
From the question we are told that
The first distance is 
The first speed is 
The second distance is 
The second speed is 
Generally the time taken for first distance is



The time taken for second distance is



The total time is mathematically represented as

=> 
=> 
Generally the constant velocity that would let her finish at the same time is mathematically represented as

=> 
=> 
Answer:
<em>Entropy Change = 0.559 Times</em>
Explanation:
Entropy change is determined by the change in the micro-states of a system. As we know that the micro-states are the same as measure of disorderness between initial and final states, that's the the amount of change in micro-states determine how much of entropy has changed in the system.
<span>The answer is transformer. They utilize
electromagnetic induction to generate current. This is only possible in
alternating current due to the differential increase and decrease of electrical
current that induces changes in magnetic flux in the coil. This varies the
magnetic flux of the primary coil that generates current in the secondary coil.</span>