answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aleksandr-060686 [28]
2 years ago
10

The speed of sound in dry air at 20 °C is 343.5 m s-1, and the frequency of the sound from the note C# above middle C on the pia

no is 277.2 s-1(according to the American standard pitch scale). Calculate the wavelength of the sound and the time it will take to travel 49.2 m across a concert hall. Wavelength = (answer) m
Physics
1 answer:
Nastasia [14]2 years ago
4 0

Answer:

1.23917 m

0.14323 s

Explanation:

v = Speed of sound in dry air at 20 °C = 343.5 m/s

f = Frequency of note C# = 277.2 /s = 277.2 Hz

λ = Wavelength

v=f\lambda\\\Rightarrow \lambda=\frac{v}{f}\\\Rightarrow \lambda=\frac{343.5}{277.2}\\\Rightarrow \lambda=1.23917\ m

Wavelength = 1.23917 m

Distance the wave needs to travel is 49.2 m

Time = Distance / Speed

\text{Time}=\frac{49.2}{343.5}=0.14323\ s

Time taken for the sound to travel across the concert hall is 0.14323 s

You might be interested in
Rock X is released from rest at the top of a cliff that is on Earth. A short time later, Rock Y is released from rest from the s
frosja888 [35]

Answer:

C) True. S increases with time, v₁ = gt and v₂ = g (t-t₀)  we see that for the same t v₁> v₂

Explanation:

You have several statements and we must select which ones are correct. The best way to do this is to raise the problem.

Let's use the vertical launch equation. The positive sign because they indicate that the felt downward is taken as an opponent.

Stone 1

    y₁ = v₀₁ t + ½ g t²

    y₁ = 0 + ½ g t²

Rock2

It comes out a little later, let's say a second later, we can use the same stopwatch

     t ’= (t-t₀)

    y₂ = v₀₂ t ’+ ½ g t’²

    y₂ = 0 + ½ g (t-t₀)²

    y₂ = + ½ g (t-t₀)²

Let's calculate the distance between the two rocks, it should be clear that this equation is valid only for t> = to

    S = y₁ -y₂

    S = ½ g t²– ½ g (t-t₀)²

    S = ½ g [t² - (t²- 2 t to + to²)]  

    S = ½ g (2 t t₀ - t₀²)

    S = ½ g t₀ (2 t -t₀)

This is the separation of the two bodies as time passes, the amount outside the Parentheses is constant.

For t <to.  The rock y has not left and the distance increases

For t> = to.  the ratio (2t/to-1)> 1 therefore the distance increases as time

passes

Now we can analyze the different statements

A) false. The difference in height increases over time

B) False S increases

C) Certain s increases with time, v₁ = gt and V₂ = g (t-t₀) we see that for the same t   v₁> v₂

3 0
2 years ago
A car traveling at speed v takes distance d to stop after the brakes are applied. What is the stopping distance if the car is in
Vikki [24]

49d

<h3>Further explanation</h3>

This case is about uniformly accelerated motion.

<u>Given:</u>

The initial speed was v takes distance d to stop after the brakes are applied.

<u>Question:</u>

What is the stopping distance if the car is initially traveling at speed 7.0v?

Assume that the acceleration due to the braking is the same in both cases. Express your answer using two significant figures.

<u>The Process:</u>

The list of variables to be considered is as follows.

  • \boxed{u \ or \ v_i = initial \ velocity}
  • \boxed{u \ or \ v_t \ or \ v_i = terminal \ or \ final \ velocity}
  • \boxed{a = acceleration \ (constant)}
  • \boxed{d = distance \ travelled}

The formula we follow for this problem are as follows:

\boxed{ \ v^2 = u^2 + 2ad \ }

  • a = acceleration (in m/s²)
  • u = initial velocity  
  • v = final velocity
  • d = distance travelled

Step-1

We substitute v as the initial speed, distance of d, and zero for final speed into the formula.

\boxed{ \ 0 = v^2 + 2ad \ }

\boxed{ \ v^2 = -2ad \ }

Both sides are divided by -2d, we get \boxed{ \ a = \Big( -\frac{v^2}{2d} \Big) \ . . . \ (Equation-1) \ }

Step-2

We substitute 7.0v as the initial speed, zero for final speed, and Equation-1 into the formula.

\boxed{ \ 0 = (7.0v)^2 + 2 \Big( -\frac{v^2}{2d} \Big)d' \ }

Here d' is the stopping distance that we want to look for.

\boxed{ \ 2 \Big( \frac{v^2}{2d} \Big)d' = (7.0v)^2 \ }

We crossed out 2 in above and below.

\boxed{ \ \Big( \frac{v^2}{d} \Big)d' = 49.0v^2 \ }

We multiply both sides by d.

\boxed{ \ v^2 d' = 49.0v^2 d \ }

We crossed out v^2 on both sides.

\boxed{\boxed{ \ d' = 49.0d \ }}

Hence, by using two significant figures, the stopping distance if the car is initially traveling at speed 7.0v is 49d.

<h3>Learn more</h3>
  1. Determine the acceleration of the stuffed bear brainly.com/question/6268248
  2. Particle's speed and direction of motion brainly.com/question/2814900
  3. About the projectile motion brainly.com/question/2746519

Keywords: a car traveling at speed v, takes distance d to stop after the brakes are applied, the stopping distance, if the car is initially traveling at speed 7.0v, the acceleration due to the braking is the same, two significant figures.

6 0
2 years ago
Read 2 more answers
A graduated cylinder contains 17.5 ml of water. When a metal cube is placed onto the cylinder, its water level rises to 20.3 ml
pogonyaev
If you are asking what the volume of the cube is it would be 20.3 - 17.5 ml so 2.8 ml.
3 0
2 years ago
Read 2 more answers
Think about it: suppose a meteorite collided head-on with mars and becomes buried under mars's surface. what would be the elasti
Ket [755]

Answer:

Perfectly inelastic collision

Explanation:

There are two types of collision.

1. Elastic collision : When the momentum of the system and the kinetic energy of the system is conserved, the collision is said to be elastic. For example, the collision of two atoms or molecules are considered to be elastic collision.

2. Inelastic collision: When the momentum  the system is conserved but the kinetic energy is not conserved, the collision is said to be inelastic. For example, collision of a ball with the mud.

For a perfectly elastic collision, the two bodies stick together after collision.

Here, the meteorite collide with the Mars and buried inside it, the collision is said to be perfectly inelastic. here the kinetic energy of a body lost completely during the collision.

4 0
2 years ago
A tennis player standing 12.6m from the net hits the ball at 3.00 degrees above the horizontal. To clear the net, the ball must
mezya [45]
We actually don't need to know how far he/she is standing from the net, as we know that the ball reaches its maximum height (vertex) at the net. At the vertex, it's vertical velocity is 0, since it has stopped moving up and is about to come back down, and its displacement is 0.33m. So we use v² = u² + 2as (neat trick I discovered just then for typing the squared sign: hold down alt and type 0178 on ur numpad wtih numlock on!!!) ANYWAY....... We apply v² = u² + 2as in the y direction only. Ignore x direction. 
IN Y DIRECTION: v² = u² + 2as 0 = u² - 2gh u = √(2gh) (Sub in values at the very end) 
So that will be the velocity in the y direction only. But we're given the angle at which the ball is hit (3° to the horizontal). So to find the velocity (sum of the velocity in x and y direction on impact) we can use: sin 3° = opposite/hypotenuse = (velocity in y direction only) / (velocity) So rearranging, velocity = (velocity in y direction only) / sin 3° = √(2gh)/sin 3° = (√(2 x 9.8 x 0.33)) / sin 3° = 49 m/s at 3° to the horizontal (2 sig figs)
4 0
2 years ago
Read 2 more answers
Other questions:
  • a stomp rocket takes 1.5 seconds to reach its maximum height what was the initial velocity and what was the maximum height ?
    14·2 answers
  • You are designing a hydraulic lift for a machine shop. the average mass of a car it needs to lift is about 1500 kg. you wish to
    6·1 answer
  • When you skid to a stop on your bike, you can significantly heat the small patch of tire that rubs against the road surface. Sup
    9·1 answer
  • A passenger railroad car has a total of 8 wheels. Springs on each wheel compress--slightly--when the car is loaded. Ratings for
    12·1 answer
  • Noise-canceling headphones are an application of destructive interference. Each side of the headphones uses a microphone to pick
    7·1 answer
  • Two blocks, 1 and 2, are connected by a rope R1 of negligible mass. A second rope R2, also of negligible mass, is tied to block
    9·1 answer
  • The small piston of a hydraulic lift has a cross-sectional of 3 00 cm2 and its large piston has a cross-sectional area of 200 cm
    14·1 answer
  • The capacitors in each circuit are fully charged before the switch is closed. Rank, from longest to shortest, the length of time
    12·1 answer
  • Guadalupe has a motorized globe on her desk that has a 0.16 m radius. She turns on the 4.25-watt motor and the globe begins to s
    12·1 answer
  • A statue and a coin are made out of exactly the same materials. Which property would you claim will likely be the same for both
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!