1) Focal length
We can find the focal length of the mirror by using the mirror equation:

(1)
where
f is the focal length

is the distance of the object from the mirror

is the distance of the image from the mirror
In this case,

, while

(the distance of the image should be taken as negative, because the image is to the right (behind) of the mirror, so it is virtual). If we use these data inside (1), we find the focal length of the mirror:

from which we find

2) The mirror is convex: in fact, for the sign convention, a concave mirror has positive focal length while a convex mirror has negative focal length. In this case, the focal length is negative, so the mirror is convex.
3) The image is virtual, because it is behind the mirror and in fact we have taken its distance from the mirror as negative.
4) The radius of curvature of a mirror is twice its focal length, so for the mirror in our problem the radius of curvature is:
To make the motor turn faster we can:
(a) increase the current
(b) use stronger magnets
(c) push the magnets closer to the coil
(d) put an iron centre piece into the coil
(e) adding more sets of coils
Answer
given,
mass of the person, m = 50 Kg
length of scaffold = 6 m
mass of scaffold, M= 70 Kg
distance of person standing from one end = 1.5 m
Tension in the vertical rope = ?
now equating all the vertical forces acting in the system.
T₁ + T₂ = m g + M g
T₁ + T₂ = 50 x 9.8 + 70 x 9.8
T₁ + T₂ = 1176...........(1)
system is equilibrium so, the moment along the system will also be zero.
taking moment about rope with tension T₂.
now,
T₁ x 6 - mg x (6-1.5) - M g x 3 = 0
'3 m' is used because the weight of the scaffold pass through center of gravity.
6 T₁ = 50 x 9.8 x 4.5 + 70 x 9.8 x 3
6 T₁ = 4263
T₁ = 710.5 N
from equation (1)
T₂ = 1176 - 710.5
T₂ = 465.5 N
hence, T₁ = 710.5 N and T₂ = 465.5 N
Answer:
kJ/mol
Explanation:
= initial vapor pressure = 45.77 mm Hg
= final vapor pressure = 193.1 mm Hg
= initial temperature = 213.1 K
= final temperature = 243.7 K
= Heat of vaporization
Using the equation


J/mol
kJ/mol
Answer:
The distance between the places where the intensity is zero due to the double slit effect is 15 mm.
Explanation:
Given that,
Distance between the slits = 0.04 mm
Width = 0.01 mm
Distance between the slits and screen = 1 m
Wavelength = 600 nm
We need to calculate the distance between the places where the intensity is zero due to the double slit effect
For constructive fringe
First minima from center

Second minima from center

The distance between the places where the intensity is zero due to the double slit effect



Put the value into the formula



Hence, The distance between the places where the intensity is zero due to the double slit effect is 15 mm.