Acceleration, a = (v - u)/t
where v is the final velocity, u is the initial velocity, and t is the time.
This formula on a velocity time graph represents the slope of the graph.
Answer and Explanation:
curents i = 2.9 A
i ' = 4.4 A
the magnitude (in T.m) of the path integral of B.dl around the window frame = μo * current enclosed
= μo* ( i '- i )
Since from Ampere's law
where μ o = permeability of free space = 4π * 10 ^-7 H / m
plug the values we get the magnitude (in T.m) of the path integral of B.dl = ( 4π*10^-7 ) (2.9+4.4)
= 1.884 * 10^-6 Tm
Answer:
The electric field strength is 
Solution:
As per the question:
Area of the electrode, 
Charge, q = 50 nC = ![50\times 10^{- 9} C[/etx]Distance, x = 2 mm = [tex]2\times 10^{- 3} m](https://tex.z-dn.net/?f=50%5Ctimes%2010%5E%7B-%209%7D%20C%5B%2Fetx%5D%3C%2Fp%3E%3Cp%3EDistance%2C%20x%20%3D%202%20mm%20%3D%20%5Btex%5D2%5Ctimes%2010%5E%7B-%203%7D%20m)
Now,
To calculate the electric field strength, we first calculate the surface charge density which is given by:

Now, the electric field strength of the electrode is:

where



Answer:0.147 N-m
Explanation:
Given
Diameter of Pulley 
radius 
mass of first object 
mass of second object 
Now both masses will exert a torque a on Pulley
Torque due to first Pulley 

Torque due to second mass on Pulley 

Total Torque by masses 

so we need to apply a torque of magnitude 0.147 N-m opposite to the direction of
Answer:
the number of additional car lengths approximately it takes the sleepy driver to stop compared to the alert driver is 15
Explanation:
Given that;
speed of car V = 120 km/h = 33.3333 m/s
Reaction time of an alert driver = 0.8 sec
Reaction time of an alert driver = 3 sec
extra time taken by sleepy driver over an alert driver = 3 - 0.8 = 2.2 sec
now, extra distance that car will travel in case of sleepy driver will be'
S_d = V × 2.2 sec
S_d = 33.3333 m/s × 2.2 sec
S_d = 73.3333 m
hence, number of car of additional car length n will be;
n = S_n / car length
n = 73.3333 m / 5m
n = 14.666 ≈ 15
Therefore, the number of additional car lengths approximately it takes the sleepy driver to stop compared to the alert driver is 15