answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MariettaO [177]
2 years ago
7

To persuade my audience that the use of mobile communication devices by drivers—even when they are hands-free—is contributing to

an increase in automobile accidents""
Physics
1 answer:
pickupchik [31]2 years ago
8 0

Answer:

specific purpose statement      

Explanation:

It is a specific purpose statement made for a persuasive speech on the question of fact.

A specific purpose statement helps to build on the general purpose (that is to inform) and to make it more specific to the audience. So if the first speech is an informative speech, our general purpose is to inform our audience about a very specific realm of knowledge.

A specific purpose statement is given to audience to persuade on specific information.

You might be interested in
A compact, dense object with a mass of 2.90 kg is attached to a spring and is able to oscillate horizontally with negligible fri
enot [183]

(a) 80 N/m

The spring constant can be found by using Hooke's law:

F=kx

where

F is the force on the spring

k is the spring constant

x is the displacement of the spring relative to the equilibrium position

At the beginning, we have

F = 16.0 N is the force applied

x = 0.200 m is the displacement from the equilibrium position

Solving the formula for k, we find

k=\frac{F}{m}=\frac{16.0 N}{0.200 m}=80 N/m

(b) 0.84 Hz

The frequency of oscillation of the system is given by

f=\frac{1}{2\pi}\sqrt{\frac{k}{m}}

where

k = 80 N/m is the spring constant

m = 2.90 kg is the mass attached to the spring

Substituting the numbers into the formula, we find

f=\frac{1}{2\pi}\sqrt{\frac{80 N/m}{2.90 kg}}=0.84 Hz

(c) 1.05 m/s

The maximum speed of a spring-mass system is given by

v=\omega A

where

\omega is the angular frequency

A is the amplitude of the motion

For this system, we have

\omega=2\pi f=2\pi (0.84 Hz)=5.25 rad/s

A=0.200 m (the amplitude corresponds to the maximum displacement, so it is equal to the initial displacement)

Substituting into the formula, we find the maximum speed:

v=(5.25 rad/s)(0.200 m)=1.05 m/s

(d) x = 0

The maximum speed in a simple harmonic motion occurs at the equilibrium position. In fact, the total mechanical energy of the system is equal to the sum of the elastic potential energy (U) and the kinetic energy (K):

E=U+K=\frac{1}{2}kx^2+\frac{1}{2}mv^2

where

k is the spring constant

x is the displacement

m is the mass

v is the speed

The mechanical energy E is constant: this means that when U increases, K decreases, and viceversa. Therefore, the maximum kinetic energy (and so the maximum speed) will occur when the elastic potential energy is minimum (zero), and this occurs when x=0.

(e) 5.51 m/s^2

In a simple harmonic motion, the maximum acceleration is given by

a=\omega^2 A

Using the numbers we calculated in part c):

\omega=2\pi f=2\pi (0.84 Hz)=5.25 rad/s

A=0.200 m

we find immediately the maximum acceleration:

a=(5.25 rad/s)^2(0.200 m)=5.51 m/s^2

(f) At the position of maximum displacement: x=\pm 0.200 m

According to Newton's second law, the acceleration is directly proportional to the force on the mass:

a=\frac{F}{m}

this means that the acceleration will be maximum when the force is maximum.

However, the force is given by Hooke's law:

F=kx

so, the force is maximum when the displacement x is maximum: so, the maximum acceleration occurs at the position of maximum displacement.

(g) 1.60 J

The total mechanical energy of the system can be found by calculating the kinetic energy of the system at the equilibrium position, where x=0 and so the elastic potential energy U is zero. So we have

E=K=\frac{1}{2}mv_{max}^2

where

m = 2.90 kg is the mass

v_{max}=1.05 m/s is the maximum speed

Solving for E, we find

E=\frac{1}{2}(2.90 kg)(1.05 m/s)^2=1.60 J

(h) 0.99 m/s

When the position is equal to 1/3 of the maximum displacement, we have

x=\frac{1}{3}(0.200 m)=0.0667 m

so the elastic potential energy is

U=\frac{1}{2}kx^2=\frac{1}{2}(80 N/m)(0.0667 m)^2=0.18 J

and since the total energy E = 1.60 J is conserved, the kinetic energy is

K=E-U=1.60 J-0.18 J=1.42 J

And from the relationship between kinetic energy and speed, we can find the speed of the system:

v=\sqrt{\frac{2K}{m}}=\sqrt{\frac{2(1.42 J)}{2.90 kg}}=0.99 m/s

(i) 1.84 m/s^2

When the position is equal to 1/3 of the maximum displacement, we have

x=\frac{1}{3}(0.200 m)=0.0667 m

So the restoring force exerted by the spring on the mass is

F=kx=(80 N/m)(0.0667 m)=5.34 N

And so, we can calculate the acceleration by using Newton's second law:

a=\frac{F}{m}=\frac{5.34 N}{2.90 kg}=1.84 m/s^2

8 0
2 years ago
An 80.0-kg object is falling and experiences a drag force due to air resistance. The magnitude of this drag force depends on its
Alja [10]

Answer:

 Terminal velocity of object = 12.58 m/s

Explanation:

 We know that the terminal velocity is attained when drag force and gravitational force are of the same magnitude.

Gravitational force = mg = 80 * 9.8 = 784 N

Drag force = 12.0v+4.00v^2

Equating both, we have

    784=12.0v+4.00v^2\\ \\ v^2+3v-196=0\\ \\ (v-12.58)(v+15.58)=0

  So v = 12.58 m/s or v = -15.58 m/s ( not possible)

 So terminal velocity of object = 12.58 m/s    

7 0
2 years ago
At what angle should the axes of two Polaroids be placed so as to reduce the intensity of the incident unpolarized light to
mote1985 [20]

Answer:

Ok, the question is incomplete buy ill try to answer this in a general way.

Suppose that you have no-polarized light.

When that light hits one polaroid, the light becomes polarized along some line, and has an intensity I0.

Now, when polarized light hits a polaroid which axis is at an angle θ with respect to the polarization of the light, the intensity of the resulting beam is given by the Malus's law:

I(θ) = I0*cos^2(θ)

For example, if the axis of the polaroid is exactly the same as the one of the polarized light, then we have θ = 0°

and:

I(0°) = I0*cos^2(0°) = I0

So the intensity does not change.

Now, knowing the initial intensity, you can find the angle needed to get a given intensity.

For example, if the question was:

"At what angle should the axes of two Polaroids be placed so as to reduce the intensity of the incident unpolarized light to A"

We should solve:

I(θ) = A = I0*cos^2(θ)

(A/i0) = cos^2(θ)

√(A/I0) = cos(θ)

Acos(√(A/I0)) = θ

6 0
2 years ago
In a particular application involving airflow over a surface, the boundary layer temperature distribution may be approximated as
Anni [7]

Answer:

The Surface heat flux is -9205 W/m^2

Explanation:

 Explanation is in the following attachment    

8 0
2 years ago
Tom’s company has been contracted to excavate uranium ore with minimal ground disruption. What process should his company use?
ziro4ka [17]
In-situ leaching or solution mining offers the least ground disruptive type of mining and waste.  This type of mining only dissolves the uranium where it is under the ground then pump up to the ground and further processed through milling. 
7 0
2 years ago
Read 2 more answers
Other questions:
  • The total energy of a 0.050 kg object travelling at 0.70 c is
    13·1 answer
  • Sam's bike tire contains 15 units of air particles and has a volume of 160mL. Under these conditions the pressure reads 13 psi.
    13·1 answer
  • vector A makes equal angles with x,y and z axis. value of its components (in terms of magnitude of vector A will be?
    6·2 answers
  • On an ice skating rink, a girl of mass 50 kg stands stationary, face to face with a boy of mass 80 kg. The children push off of
    15·2 answers
  • A car enters a 300-m radius horizontal curve on a rainy day when the coefficient of static friction between its tires and the ro
    7·1 answer
  • At standard temperature and pressure, a 0.50 mol sample of H2 gas and a separate 1.0 mol sample of O2 gas have the same A. avera
    6·1 answer
  • The flight of a kicked football follows the quadratic function f(x)=−0.02x2+2.2x+2, where f(x) is the vertical distance in feet
    14·1 answer
  • You live on a planet far from ours. "Based on extensive communication with a physicist on earth", you have determined that all l
    6·1 answer
  • A diver runs horizontally with a speed of 1.20 m/s off a platform that is 10.0 m above the water. What is his speed just before
    8·1 answer
  • On James’s MP3 player, he has 12 sad songs and 40 upbeat songs that he wants to put into playlists. He wants to have the same nu
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!