Answer:
<em>The final charge on the 6.0 mF capacitor would be 12 mC</em>
Explanation:
The initial charge on 4 mF capacitor = 4 mf x 50 V = 200 mC
The initial Charge on 6 mF capacitor = 6 mf x 30 V =180 mC
Since the negative ends are joined together the total charge on both capacity would be;
q = 
q = 200 - 180
q = 20 mC
In order to find the final charge on the 6.0 mF capacitor we have to find the combined voltage
q = (4 x V) + (6 x V)
20 = 10 V
V = 2 V
For the final charge on 6.0 mF;
q = CV
q = 6.0 mF x 2 V
q = 12 mC
Therefore the final charge on the 6.0 mF capacitor would be 12 mC
Answer:

Explanation:
Mass of the ship (m) = 6.9 × 10⁷ kg
Speed of the ship (v) = 33 km/h
First, let us convert the speed from km/h to m/s using the conversion factor.
We know that, 1 km/h = 5/18 m/s
So, 33 km/h = 
Now, we know, the momentum of an object only depends on its mass and speed. Momentum is independent of the length of the object.
So, here, length of the ship doesn't play any role in the determination of the momentum.
Magnitude of momentum of the ship = Mass × Speed
= 
= 
Therefore, the magnitude of ship's momentum is
.
Answer:
A = 4.76 x 10⁻⁴ m²
Explanation:
given,
weight of the person = 625 N
weight of the bike = 98 N
Pressure on each Tyre = 7.60 x 10⁵ Pa
Area of contact on each Tyre = ?
total weight of the system = 625 + 98
= 723 N
Let F be the force on both the Tyre
F + F = W
2 F = 723
F = 361.5 N
F = P A

A = 4.76 x 10⁻⁴ m²
Answer:
Note: Angular momentum is always conserved in a collision.
The initial angular momentum of the system is
L = ( It ) ( ωi )
where It = moment of inertia of the rotating circular disc,
ωi = angular velocity of the rotating circular disc
The final angular momentum is
L = ( It + Ir ) ( ωf )
where ωf is the final angular velocity of the system.
Since the two angular momenta are equal, we see that
( It ) ( ωi ) = ( It + Ir ) ( ωf )
so making ωf the subject of the formula
ωf = [ ( It ) / ( It + Ir ) ] ωi
Explanation:
Answer : The mass of ice melted can be, 3.98 grams.
Explanation :
First we have to calculate the moles of ice.

where,
Q = energy absorbed = 27.2 kJ
= enthalpy of fusion of ice = 6.01 kJ/mol
n = moles = ?
Now put all the given values in the above expression, we get:


Now we have to calculate the mass of ice.

Molar mass of ice = 18.02 g/mol

Thus, the mass of ice melted can be, 3.98 grams.