Coefficient of static friction = tan(a) = 0.4
r = 740 m
g = 9.8 m/s²

v = √(9.8 × 740 × 0.4) m/s
v ≈ 53.85908 m/s
Complete question is;
A ski jumper travels down a slope and leaves the ski track moving in the horizontal direction with a speed of 24 m/s. The landing incline below her falls off with a slope of θ = 59◦ . The acceleration of gravity is 9.8 m/s².
What is the magnitude of the relative angle φ with which the ski jumper hits the slope? Answer in units of ◦
Answer:
14.08°
Explanation:
The time covered will be given by the formula;
t = (2V_x•tan θ)/g
t = (2 × 24 × tan 59)/9.8
t = 8.152 s
Now, the slope of the flight path at the point of impact will be given by the formula;
tan α = V_y/V_x
We are given V_x = 24 m/s
V_y will be gotten from the formula;
v = gt
Thus;
V_y = gt
V_y = 9.8 × (8.152) = 78.89 m/s
Thus;
tan α = 78.89/24
tan α = 3.2871
α = tan^(-1) 3.2871
α = 73.08°
Thus ;
Relative angle φ = α - θ = 73.08 - 59 = 14.08°
Answer:
B. Trial 2
Explanation:
Trial 2, because the student’s finger applied the largest force to the sensor.
Because the trial 2 student finger applied to largest force.
Answer:
d) 1.2 mT
Explanation:
Here we want to find the magnitude of the magnetic field at a distance of 2.5 mm from the axis of the coaxial cable.
First of all, we observe that:
- The internal cylindrical conductor of radius 2 mm can be treated as a conductive wire placed at the axis of the cable, since here we are analyzing the field outside the radius of the conductor. The current flowing in this conductor is
I = 15 A
- The external conductor, of radius between 3 mm and 3.5 mm, does not contribute to the field at r = 2.5 mm, since 2.5 mm is situated before the inner shell of the conductor (at 3 mm).
Therefore, the net magnetic field is just given by the internal conductor. The magnetic field produced by a wire is given by

where
is the vacuum permeability
I = 15 A is the current in the conductor
r = 2.5 mm = 0.0025 m is the distance from the axis at which we want to calculate the field
Substituting, we find:
