answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
rjkz [21]
2 years ago
10

Newton’s law of cooling states that dx dt = −k(x−A) where x is the temperature,t is time, A is the ambient temperature, and k &g

t; 0 is a constant. Suppose that A = A0 cos(ωt) for some constants A0 and ω. That is, the ambient temperature oscillates (for example night and day temperatures). a) Find the general solution. b) In the long term, will the initial conditions make much of a difference? Why or why not?
Physics
1 answer:
lys-0071 [83]2 years ago
5 0

Answer:

a)X= kA_o\dfrac{1}{k^2+\omega^2}\left ( kcos\omega t+\omega sin\omega t \right )+Ce^{-kt}

b)Does not affect the long term.

Explanation:

Given that

\dfrac{dx}{dt}=-k(x-A)

A = A0 cos(ωt)

\dfrac{dx}{dt}=-k(x-A_o cos(\omega t))

\dfrac{dx}{dt}+kx=kA_o cos(\omega t)

This is linear equation so integration factor ,I

I=e^{\int kdt}

I=e^{kt}

Now by using linear equation property

e^{kt} X=\int e^{kt} kA_o cos(\omega t) dt +C

e^{kt} X= kA_o \dfrac{e^{kt}}{k^2+\omega^2}\left ( kcos\omega t+\omega sin\omega t \right )+C

X= kA_o\dfrac{1}{k^2+\omega^2}\left ( kcos\omega t+\omega sin\omega t \right )+Ce^{-kt}

b)

at t= 0

X(0)=\dfrac{k^2A_o}{\omega^2+k^2}+C

X= kA_o\dfrac{1}{k^2+\omega^2}\left ( kcos\omega t+\omega sin\omega t \right )+e^{-kt}\times \left ( X(0)-\dfrac{k^2A_o}{\omega^2+k^2} \right )

So the initial condition does not affect the long term.

You might be interested in
An athlete is working out in the weight room. He steadily holds 50 kilograms above his head for 10 seconds. Which statement is t
Nataly_w [17]
<span>The athlete is sweating, straining, sweating, trembling and groaning. 
But if he passed high school physics, then he may remember that
'work' in physics means (force) x (distance).  If there's no distance,
then there's no work. 

He realizes that he isn’t doing any work because he's not moving the weight.</span>
4 0
2 years ago
Read 2 more answers
An object can be broken up by a planet's gravity once it passes the _______. The Jovian planets are composed primarily of ______
Rina8888 [55]

Answer:1. Roche limit

2.hydrogen

3.atmosphere

4.mercury

5.venus

6.when an object passes the Roche limit, the strength of gravity on the object increases. If the density of the planet is higher, then the object can break up farther away from the planet. If the density is lower, then the Roche limit is located closer to the planet

7.Farther our in the solar system, beyond the frost line, hydrogen was at a low enough temperature that it could condense. This allowed hydrogen to accumulate under gravity, eventually forming the Jovian planets

Explanation:

3 0
2 years ago
Read 2 more answers
A 10kg rocket is traveling at 80 m/s when the booster engine applies a constant forward force of 60 N for 3.0 seconds. What impu
Lina20 [59]

Answer:

Impulse = 90

Resulting Velocity = 89

Explanation:

Use F * change in time = m * change in velocity.

For the first part of the question, the left side of the equation is the impulse. Plug it in.

60 * (3.0 - 0) = 90.

For the second half. we use all parts of the equation. I'm gonna use vf for the final velocity.

60 * (3.0 - 0) = 10 * (vf - 80). Simplify.

90 = 10vf - 800. Simplify again.

890 = 10vf. Divide to simplify and get the answer.

The resulting velocity is 89.

4 0
1 year ago
If Pete ( mass=90.0kg) weights himself and finds that he weighs 30.0 pounds, how far away from the surface of the earth is he
shutvik [7]

Answer: 9938.8 km

Explanation:

1 pound-force = 4.48 N

30.0 pounds-force = 134.4 N

The force of gravitation between Earth and object on the surface of is given by:

F = \frac{GMm}{R^2} = mg

Where M is the mass of the Earth, m is the mass of the object, R (6371 km) is the radius of the Earth.

At height, h above the surface of the Earth, the weight of the object:

(mg)'= \frac{GMm}{(R+h)^2}

we need to find "h"

taking the ratio of two:

\frac{mg}{(mg)'}=\frac{(R+h)^2}{R^2}\\ \Rightarrow \frac{90kg \times 9.8 m/s^2}{134.4 N}=\frac{(R+h)^2}{R^2}\\ \Rightarrow 6.56 R^2= (R+h)^2 \Rightarrow h= (2.56-1)R\\ \Rightarrow h = 1.56 R = 1.56 \times 6371 km = 9938. 8 km

Hence, Pete would weigh 30 pounds at 9938.8 km above the surface of the Earth.

5 0
2 years ago
A 3.0-kg brick rests on a perfectly smooth ramp inclined at 34° above the horizontal. The brick is kept from sliding down the pl
Firdavs [7]

Answer:

d=0.137 m ⇒13.7 cm

Explanation:

Given data

m (Mass)=3.0 kg

α(incline) =34°

Spring Constant (force constant)=120 N/m

d (distance)=?

Solution

F=mg

F=(3.0)(9.8)

F=29.4 N

As we also know that

Force parallel to the incline=FSinα

F=29.4×Sin(34)

F=16.44 N

d(distance)=F/Spring Constant

d(distance)=16.44/120

d(distance)=0.137 m ⇒13.7 cm

4 0
2 years ago
Other questions:
  • Which of the following are linear defects?. . An edge dislocation. . A Frenkel defect. . A screw dislocation. . A Schottky defec
    6·1 answer
  • What is the approximate increase in size from a 1 w to a 2w carbon resistor?
    5·1 answer
  • A carnot engine operates between two heat reservoirs at temperatures th and tc. an inventor proposes to increase the efficiency
    7·1 answer
  • A beaker contain 200mL of water<br> What is its volume in cm3 and m3
    5·2 answers
  • As part of a circus performance, a man is attempting to throw a dart into an apple which is dropped from an overhead platform. U
    8·1 answer
  • In this problem you are to consider an adiabaticexpansion of an ideal diatomic gas, which means that the gas expands with no add
    6·1 answer
  • _____ is a mathematical theory for developing strategies that maximize gains and minimize losses while adhering to a given set o
    15·1 answer
  • A bodybuilder lifts a 10 N weight a distance of 2.5 m. <br> How much energy has the weight gained?
    12·1 answer
  • A teacher performing demonstration finds that a piece of cork displaces 23.5 ml of water. The piece of cork has a mass 5.7 g. Wh
    10·1 answer
  • A screw-jack used to lift a bus is a
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!