acceleration of rocket is given here as

now we know that

now integrating both sides



here since its given that rocket will accelerate for t = 10 s
so here we have


so after t = 10 s the speed of rocket will be 130 m/s upwards
The mass of the puck is
m = 0.15 kg.
The diameter of the puck is 0.076 m, therefore its radius is
r = 0.076/2 = 0.038 m
The sliding speed is
v = 0.5 m/s
The angular velocity is
ω = 8.4 rad/s
The rotational moment of inertia of the puck is
I = (mr²)/2
= 0.5*(0.15 kg)*(0.038 m)²
= 1.083 x 10⁻⁴ kg-m²
The kinetic energy of the puck is the sum of the translational and rotational kinetic energy.
The translational KE is
KE₁ = (1/2)*m*v²
= 0.5*(0.15 kg)*(0.5 m/s)²
= 0.0187 j
The rotational KE is
KE₂ = (1/2)*I*ω²
= 0.5*(1.083 x 10⁻⁴ kg-m²)*(8.4 rad/s)²
= 0.0038 J
The total KE is
KE = 0.0187 + 0.0038 = 0.0226 J
Answer: 0.0226 J
Answer:
t = 25 seconds
Explanation:
Given that,
Distance, d = 115 m
Initial speed, u = 4.2 m/s
Final speed, v = 5 m/s
We need to find the time taken in increasing the speed.
We know that,
Acceleration,
....(1)
The third equation of kinematics is as follows :

Hence, it will take 25 seconds to increase the speed.
Answer: 6.48m/s
Explanation:
First, we know that Impulse = change in momentum
Initial velocity, u = 19.8m/s
Let,
Velocity after first collision = x m/s
Velocity after second collision = y m/s
Also, we know that
Impulse = m(v - u). But then, the question said, the guard rail delivered a "resistive" impulse. Thus, our impulse would be m(u - v).
5700 = 1500(19.8 - x)
5700 = 29700 - 1500x
1500x = 29700 - 5700
1500x = 24000
x = 24000/1500
x = 16m/s
Also, at the second guard rail. impulse = ft, so that
Impulse = 79000 * 0.12
Impulse = 9480
This makes us have
Impulse = m(x - y)
9480 = 1500(16 -y)
9480 = 24000 - 1500y
1500y = 24000 - 9480
1500y = 14520
y = 14520 / 1500
y = 9.68
Then, the velocity decreases by 3.2, so that the final velocity of the car is
9.68 - 3.2 = 6.48m/s
Answer:
1331.84 m/s
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity = 0
s = Displacement = 490 km
a = Acceleration
g = Acceleration due to gravity = 1.81 m/s² = a
From equation of linear motion

The speed of the material must be 1331.84 m/s in order to reach the height of 490 km