Answer:
292796435 seconds ≈ 300 million seconds
Explanation:
First of all, the speed of the car is 121km/h = 33.6111 m/s
The radius of the planet is given to be 7380 km = 7380000 m
From the relationship between linear velocity and angular velocity i.e., v=rw, the angular velocity of the car will be w=v/r = 33.6111/7380000 = 0.000000455 rad/s = 4.55 x 10⁻⁶ rad/sec
If the angular velocity of the vehicle about the planet's center is 9.78 times as large as the angular velocity of the planet then we have
w(vehicle) = 9.78 x w(planet)
w(planet) = w(vehicle)/9.78 = 4.55 x 10⁻⁶ / 9.78 = 4.66 x 10⁻⁷ rad/sec
To find the period of the planet's rotation; we use the equation
w(planet) = 2π÷T
Where w(planet) is the angular velocity of the planet and T is the period
From the equation T = 2π÷w = 2×(22/7) ÷ 4.66 x 10⁻⁷ = 292796435 seconds
Therefore the period of the planet's motion is 292796435 seconds which is approximately 300, 000, 000 (300 million) seconds
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions here.
The moment of the resultant of these two forces with respect to O 376 lb-ft CCW which is <span>about moment center point O.</span>
<span>The skier will transform their gravitational energy into mostly kinetic energy (with a minor amount transformed into heat from the friction of the skis across the snow and air friction). Once the skier hits the snowdrift, their kinetic energy is transferred into the snow which moves when they strike it due to the kinetic energy that is now in the snow. Along with again a minor amount of heat energy transferred as they move through the snowdrift.</span>
Answer:
d. at the same velocity
Explanation:
I will assume the car is also travelling westward because it was stated that the helicopter was moving above the car. In that case, it depends where the observer is. If the observer is in the car, the helicopter would look like it is standing still ( because both objects have the same velocity). If the observer is on the side of the road, both objects would be travelling at the same velocity. Also recall that, velocity is a vector quantity; it is direction-aware. Velocity is the rate at which the position changes but speed is the rate at which object covers distance and it is not direction wise. Hence velocity is the best option.
Answer:
F₁ = F₂ = F₃ = 0 N
Explanation:
given,
Arrow 1 mass = 80 g speed = 10 m/s
Arrow 2 mass = 80 g speed = 9 m/s
Arrow 3 mass = 90 g speed = 9 m/s
Horizontal Force:- F₁ , F₂ and F₃
There is no air resistance.
If Air resistance is zero then the horizontal acceleration of the arrow also equal to zero.
We know,
According to newton's second law
F = m a
If Acceleration is equal to zero
Then Force is also equal to zero.
Hence, F₁ = F₂ = F₃ = 0 N