To solve this problem it is necessary to apply the kinematic equations of Energy for which the rotation of a circular body is described as

Where,
m = Mass of the Vall
v = Velocity
I = Moment of inertia abouts its centre of mass
Angular speed
Basically the two sums of energies is the consideration of translational and rotational kinetic energy.
a. so that it was also rotating?
The ball is rotating means that it has some angular speed:


When there is a little angular energy (and not linear energy to travel faster), translational energy will be greater than the 1000J applied.

The ball will not go faster.
c. so that it wasn't rotating?
For the case where the angular velocity does not rotate it is zero therefore



All energy is transoformed into translational energy so it is possible to go faster. This option is CORRECT.
b. It makes no difference.
Although the order presented is different, I left this last option because as we can see with the previous two parts if there is an affectation regarding angular movement, therefore it is not correct.
Answer: The final volume V₂ of the container is 0.039 m³.
Explanation:
Since the temperature is constant, the gas would expand isothermally.
For isothermal expansion,
P₁V₁=P₂V₂
Where, P₁ and P₂ are the initial and final pressure and V₁ and V₂ are initial and final volume.
It is given that:
V₁ = 0.0250 m³
P₁ = 1.5 × 10⁶ Pa
P₂ = 0.950 × 10⁶ Pa
V₂ = ?
⇒ 1.5 × 10⁶ Pa × 0.0250 m³ = 0.950 × 10⁶ Pa × V₂
⇒V₂ = 0.039 m³
Hence, the final volume V₂ of the container is 0.039 m³.
Answer:
C. Between North and West
Explanation:
Since all have equal masses and the red ball and green ball are moving in south and east direction, the blue ball would most likely be moving between the north and West direction.
Complete Question
If you are lying down and stand up quickly, you can get dizzy or feel faint. This is because the blood vessels don’t have time to expand to compensate for the blood pressure drop. If your brain is 0.4 m higher than your heart when you are standing, how much lower is your blood pressure at your brain than it is at your heart? The density of blood plasma is about 1025 kg/m3 and a typical maximum (systolic) pressure of the blood at the heart is 120 mm of Hg (= 0.16 atm = 16 kP = 1.6 × 104 N/m2).
Answer:
The pressure at the brain is 
Explanation:
Generally is mathematically denoted as

Substituting
for
(the density) ,
for g (acceleration due to gravity) , 0.4m for h (the height )
We have that the pressure difference between the heart and the brain is

But the pressure of blood at the heart is given as

Now the pressure at the brain is mathematically evaluated as



Answer:
Two marbles are launched at t = 0 in the experiment illustrated in the figure below. Marble 1 is launched horizontally with a speed of 4.20 m/s from a height h = 0.950 m. Marble 2 is launched from ground level with a speed of 5.94 m/s at an angle above the horizontal. (a) Where would the marbles collide in the absence of gravity? Give the x and y coordinates of the collision point. (b) Where do the marbles collide given that gravity produces a downward acceleration of g = 9.81 m/s2? Give the x and y coordinates.
Explanation:
i want the answer i don't know