What team are you talking about
Answer:
upward force acting = 261.6 N
Explanation:
given,
mass of gibbon = 9.4 kg
arm length = 0.6 m
speed of the swing
net force must provide

force of gravity = - mg

= 
= 
=9 x 29.067
= 261.6 N
upward force acting = 261.6 N
Answer:
a) 2.5m/s
b) 0.91m/s
c) 0m/s
Explanation:
Average velocity can be said to be the ratio of the displacement with respect to time.
Average speed on the other hand is the ratio of distance in relation to time
Thus, to get the average velocity for the first half of the swim
V(average) = displacement of first trip/time taken on the trip
V(average) = 50/20
V(average) = 2.5m/s
Average velocity for the second half of the swim will be calculated in like manner, thus,
V(average) = 50/55
V(average) = 0.91m/s
Average velocity for the round trip will then be
V(average) = 0/75, [50+25]
V(average) = 0m/s
<span>E = h x f </span>
<span>. . . then : </span>
<span>f = E / h </span>
<span>f = 4,41•10^-19 / 6,62•10^-34 </span>
<span>f = 6,66•10^14 Hz (s^-1) </span>
<span>b/ What is the wavelength of this light ? </span>
<span>- - - - - - - - - - - - - - - - - - - - - - - - - - - - </span>
<span>λ = c / f </span>
<span>λ = 3•10^8 / 6,66•10^14 </span>
<span>λ = 4,50•10^-7 m </span>
Answer:
E = 1.25×10¹³ N/m²
Explanation:
Young's modulus is defined as:
E = stress / strain
E = (F / A) / (dL / L)
E = (F L) / (A dL)
Given:
F = 10 kg × 9.8 m/s² = 98 N
L = 1 m
dL = 10⁻⁵ m
A = π/4 (0.001 m)² = 7.85×10⁻⁷ m²
Solve:
E = (98 N × 1 m) / (7.85×10⁻⁷ m² × 10⁻⁵ m)
E = 1.25×10¹³ N/m²
Round as needed.